

The Equation of State of the Universe after a First-Order Phase Transition

Henda Mansour

In collaboration with: Yann Gouttenoire and Felix Kahlhoefer

The transition proceeds through bubble nucleation:

- + The scalar field acts like a cosmological constant before the transition: $\omega_\phi = -1$
- + For strong supercooling $\Delta V >
 ho_{
 m rad}(T_{
 m PT})$
- + If the scalar field decays slowly, there will be a period of scalar field domination after percolation

Scalar field domination after FOPT

true vacuum

 $\langle \phi \rangle \neq 0$

If reheating is slow, such that we can focus only on the scalar dynamics:

After the transition, the field oscillates around the new minimum → Matter domination?

Equation of state:
$$\langle \omega \rangle = \frac{\langle p \rangle}{\langle \rho \rangle}$$
 pressure energy density

In the case of coherent oscillations:

Around the minimum:

$$\langle \omega \rangle = \frac{\langle p_{\phi} \rangle}{\langle \rho_{\phi} \rangle} = \frac{\frac{1}{2} \langle \dot{\phi}^2 \rangle - \langle V(\phi) \rangle}{\frac{1}{2} \langle \dot{\phi}^2 \rangle + \langle V(\phi) \rangle}$$

$$V(\phi) \sim \phi^k \qquad \Rightarrow \qquad \overline{\langle E_{
m kin}
angle = rac{k}{2} \langle V(\phi)
angle} \qquad \Rightarrow \qquad ext{For:} \ \ k=2 \qquad \ \omega=0$$

 $\omega = \frac{k-2}{k+2}$... It is however not as simple for a scalar field configuration post collision

 $\langle \phi \rangle = 0$

Scalar field domination after FOPT

- 1. Non-vanishing gradients have to be taken into consideration
- 2. Bubble walls are relativistic:
 - → relativistic scalar waves?
 - radiation domination?

Bubble nucleation and percolation on the lattice:

Spatial
$$p_{\phi} = \frac{1}{2}\dot{\phi}^2 - \frac{1}{6}(\nabla\phi)^2 - V(\phi)$$

$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + \frac{1}{2}(\nabla\phi)^2 + V(\phi)$$

Why does it matter?

Particle production:

Dilution of pre-existing abundances in the case of matter domination (MD) (Co. et al. (2015), Cirelli et al. (2016), Bishara et al. (2024) and many others)

Production of primordial black holes:

Smaller overdensity threshhold for collapse during MD

(PBH production during matter domination (Harada et al. arXiv: 1609.01588), PBH production during FOPTs: Y. Gouttenoire and T. Volansky, arXiv: 2305.04942)

Gravitational Waves: Could impact the spectrum of GW expected

General impact of MD: (Kazunori Nakayama et al. (2008), Boyle and Steinhardt (2008), Seto and Yokoyama (2003), D'Eramo and Schmitz (2019)....)

More specific to FOPTs: (Ellis et al. (2019) and (2020))

Why does it matter?

Example: Dark Matter Phase-in

based on: [2504.10593] with C. Benso and F. Kahlhoefer

Boltzmann equations for energy/number densities:

$$rac{\mathrm{d}
ho_\phi}{\mathrm{d}a} = -rac{3(1+\omega)}{a}
ho_\phi - rac{\Gamma}{aH}
ho_\phi$$

$$rac{\mathrm{d}
ho_{\mathrm{SM}}}{\mathrm{d}a} = -rac{4}{a}
ho_{\mathrm{SM}} + rac{\Gamma}{aH}
ho_{\phi} \, .$$

$$rac{\mathrm{d}n_{\mathrm{DM}}}{\mathrm{d}a} = -rac{3}{a}n_{\mathrm{DM}} + rac{\langle\sigma v
angle}{aH}n_{\mathrm{SM}}^2$$

matter dom.

modified cosmology

with:

 $\xi_{PT}=rac{T_{VD}}{T_{PT}}$ (amount of supercooling) $\xi_{VD}=rac{T_{RH}}{T_{VD}}$ (high/low reheating temp.) $\gamma=rac{\Gamma}{H(a_{ ext{PT}})}$ (speed of the decay)

10

 $\xi_{\rm VD}$

freeze-in dominates

Question: What is the equation of state of the Universe after a supercooled phase transition?

• Build some analytical understanding of the equation of state:

General EoS for a inhomogeneous scalar field:

$$\omega=rac{p_\phi}{
ho_\phi}=rac{\langle K
angle-(d-2)/d\,\langle G
angle-\langle V
angle}{\langle K
angle+\langle G
angle+\langle V
angle}$$
 with $d=$ # of spatial dimensions kinetic gradient

• Build some analytical understanding of the equation of state:

$$\omega=rac{p_\phi}{
ho_\phi}=rac{\langle K
angle-(d-2)/d\,\langle G
angle-\langle V
angle}{\langle K
angle+\langle G
angle+\langle V
angle}$$
 with $d=$ # of spatial dimensions kinetic potential

• Assume a generic polynomial potential and focus on the scalar field dynamics (no T dependence):

$$\ddot{\phi} - a^{-2} ec{
abla}^2 \phi + dH \dot{\phi} = -V_{,\phi}$$

$$\ddot{\phi}-a^{-2}\vec{
abla}^2\phi+dH\dot{\phi}=-V_{,\phi} \qquad ext{with} \quad V(\phi)=rac{m_\phi^2}{2}\phi^2-\kappa\phi^3+lpha\phi^4$$

• Build some analytical understanding of the equation of state:

$$\omega=rac{p_\phi}{
ho_\phi}=rac{\langle K
angle-(d-2)/d\,\langle G
angle-\langle V
angle}{\langle K
angle+\langle G
angle+\langle V
angle}$$
 with $d=$ # of spatial dimensions

• Assume a generic polynomial potential and focus on the scalar field dynamics (no T dependence):

$$\ddot{\phi}-a^{-2}\vec{
abla}^2\phi+dH\dot{\phi}=-V_{,\phi} \qquad ext{with} \quad V(\phi)=rac{m_\phi^2}{2}\phi^2-\kappa\phi^3+lpha\phi^4$$

with
$$V(\phi) = \frac{m_{\phi}^2}{2}\phi^2 - \kappa\phi^3 + \alpha\phi^3$$

• Apply the virial theorem to determine a relation between the averaged energy densities: After percolation, the solution can be approximated by oscillations of the field

Approximate around the minimum

$$\langle K
angle \simeq \langle G
angle + \langle \phi V_{,\phi}/2
angle + d \left\langle H \phi \dot{\phi}
ight
angle /2 \hspace{0.5cm} \Longrightarrow \hspace{0.5cm} V(\phi) \sim \phi^2 \hspace{0.5cm} \Longrightarrow \hspace{0.5cm} \langle K
angle \simeq \langle G
angle + \langle V
angle$$

$$V(\phi) \sim \phi^2$$
 =

$$\langle K
angle \simeq \langle G
angle + \langle V
angle$$

• Build some analytical understanding of the equation of state:

$$\omega=rac{p_\phi}{
ho_\phi}=rac{\langle K
angle-(d-2)/d\,\langle G
angle-\langle V
angle}{\langle K
angle+\langle G
angle+\langle V
angle}$$
 with $d=$ # of spatial dimensions

• Assume a generic polynomial potential and focus on the scalar field dynamics (no T dependence):

$$\ddot{\phi} - a^{-2} \vec{
abla}^2 \phi + dH \dot{\phi} = -V_{,\phi}$$

$$\ddot{\phi}-a^{-2}\vec{
abla}^2\phi+dH\dot{\phi}=-V_{,\phi} \qquad ext{with} \quad V(\phi)=rac{m_\phi^2}{2}\phi^2-\kappa\phi^3+lpha\phi^4$$

• Apply the virial theorem to determine a relation between the averaged energy densities: After percolation, the solution can be approximated by oscillations of the field

Approximate around the minimum

Approximate around the minimum
$$\langle K
angle\simeq \langle G
angle+\langle \phi V_{,\phi}/2
angle+d\left\langle H\phi\dot{\phi}
ight
angle/2 \implies V(\phi)\sim\phi^2 \implies \langle K
angle\simeq \langle G
angle+\langle V
angle$$
 potential gradient

$$V(\phi)\sim \phi^2$$

$$\langle K
angle \simeq \langle G
angle + \langle V
angle$$

We find a simplified expression:

$$\omega = d^{-1} rac{\langle G
angle}{\langle G
angle + \langle V
angle}$$

11

$$\ddot{\phi}-a^{-2}ec{
abla}^2\phi+dH\dot{\phi}=-V_{,d}$$

Solve on the lattice:
$$\ddot{\phi}-a^{-2}\vec{\nabla}^2\phi+dH\dot{\phi}=-V_{,\phi}$$
 with $V(\phi)=\frac{m_\phi^2}{2}\phi^2-\kappa\phi^3+\alpha\phi^4$

Example: 2D simulation with random nucleation and static background

Step II: Let a computer do it

$$\ddot{\phi}-a^{-2}ec{
abla}^2\phi+dH\dot{\phi}=-V_{,\phi}$$

Solve on the lattice:
$$\ddot{\phi}-a^{-2}\vec{\nabla}^2\phi+dH\dot{\phi}=-V_{,\phi}$$
 with $V(\phi)=\frac{m_\phi^2}{2}\phi^2-\kappa\phi^3+\alpha\phi^4$

The EoS can be determined from the

evolution of the energy densities:

$$\omega = rac{p_\phi}{
ho_\phi} = rac{\langle K
angle - (d-2)/d \, \langle G
angle - \langle V
angle}{\langle K
angle + \langle G
angle + \langle V
angle}$$

Example: 2D simulation with random nucleation and static background

Virial Theorem

$$\langle K
angle \simeq \langle G
angle + \langle V
angle$$
 is fullfilled!

$$\ddot{\phi}-a^{-2}ec{
abla}^2\phi+dH\dot{\phi}=-V_{,\phi}$$

Solve on the lattice:
$$\ddot{\phi}-a^{-2}\vec{\nabla}^2\phi+dH\dot{\phi}=-V_{,\phi}$$
 with $V(\phi)=\frac{m_\phi^2}{2}\phi^2-\kappa\phi^3+\alpha\phi^4$

The EoS can be determined from the

evolution of the energy densities:

$$\omega = rac{p_\phi}{
ho_\phi} = rac{\langle K
angle - (d-2)/d \, \langle G
angle - \langle V
angle}{\langle K
angle + \langle G
angle + \langle V
angle}$$

Example: 2D simulation with random nucleation and static background

The lattice results show an equation of state value between matter and radiation domination. What does the EoS depend on?

What determines the EoS?

(Step III: Let a computer do it again and again)

Systematic study of the simulation results for bubble collisions in 1, 2 and 3 spatial dimensions

Varying the initial bubble separation to reach different bubble wall velocities:

Larger bubble separation

- → more relativistic bubble walls
- → more energy in gradients
- → closer to radiation domination

Summarized results for the EoS after percolation (1+1 and 1+2 simulations)

What determines the EoS?

(Step III: Let a computer do it again and again)

Systematic study of the simulation results for bubble collisions in 1, 2 and 3 spatial dimensions

Varying the initial bubble separation to reach different bubble wall velocities:

Larger bubble separation

- → more relativistic bubble walls
- → more energy in gradients
- → closer to radiation domination

What about predictivity? Is it possible to determine a function $\,\omega(\gamma_{\star})\,$?

Summarized results for the EoS after percolation (1+1 and 1+2 simulations)

Determination of Lorentz factor

We track the wall thickness during the expansion of 1D bubbles to confirm the relation between γ and R_{coll}/R_{ini} .

Move to fourier space and re-write the previous expressions in terms of the power spectrum

$$\langle \phi_{\mathbf{k}'} \phi_{\mathbf{k}}
angle = P_{\phi}(k) (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k}')$$

We introduce the dimensionless power spectrum

$$\Delta_{\phi}(k)=rac{k^d}{(2\pi)^d}S_{d-1}P_{\phi}(k), \quad ext{with} \quad S_{d-1}=2\pi^{d/2}/\Gamma\left(d/2
ight)$$

With some simplifications, one can re-express the energy densities in terms of the power spectrum:

$$\omega = d^{-1} rac{\langle G
angle}{\langle K
angle} = d^{-1} rac{\int d \ln k (k/a)^2 \Delta_\phi(k)}{\int d \ln k \, \left(m_\phi^2 + (k/a)^2
ight) \Delta_\phi(k)}$$

Move to fourier space and re-write the previous expressions in terms of the power spectrum

$$\langle \phi_{\mathbf{k}'} \phi_{\mathbf{k}}
angle = P_{\phi}(k) (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{k}')$$

We introduce the dimensionless power spectrum

$$\Delta_{\phi}(k)=rac{k^d}{(2\pi)^d}S_{d-1}P_{\phi}(k), \quad ext{with} \quad S_{d-1}=2\pi^{d/2}/\Gamma\left(d/2
ight)$$

With some simplifications, one can re-express the energy densities in terms of the power spectrum:

$$\omega = d^{-1} rac{\langle G
angle}{\langle K
angle} = d^{-1} rac{\int d \ln k (k/a)^2 \Delta_\phi(k)}{\int d \ln k \, \left(m_\phi^2 + (k/a)^2
ight) \Delta_\phi(k)}$$

Is it possible to determine a function $\,\omega(\gamma_{\star})\,$?

Maybe if we find determine an analytic form for the dimensionless PS in terms of the lorentz factor of the wall γ

Step V: Study the power spectrum

Evolution of the power spectrum before and after collision/percolation (results of 3D simulation)

We have performed checks using 2D simulations. These show that the peak dissapears with higher resolution.

The peak seems to be a lattice artifact. The power spectrum follows instead a simple broken power law.

Immediately after a first order phase transition we find that:

Larger bubble separation

- → more relativistic bubble walls
- → more energy in gradients
- → closer to radiation domination

An analytically motivated function for $\omega(\gamma_*)$ will follow.

If thermalization is very slow, the expansion will eventually suppress the gradients and might still allow for a purely matter-dominated epoch.

Detailed results on the evolution of the EoS with expansion are upcoming.