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First Order Phase Transitions  ~XIT

The transition proceeds through bubble nucleation:
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+ It the scalar field decays slowly, there will be a period of

scalar field domination after percolation
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If reheating is slow, such that we can focus only on the scalar

dynamics:

After the transition, the field oscillates around the new minimum
- Matter domination?

Equation of state: (W)
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In the case of coherent oscillations:

Around the minimum:
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.. [t is however not as simple for
a scalar field configuration post
collision




Scalar field domination after FOPT SKIT

Bubble nucleation and percolation on the lattice:
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1.Non-vanishing gradients have to
be taken into consideration
2.Bubble walls are relativistic:
- relativistic scalar waves?
- radiation domination?
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Why does it matter ?

Particle production :

Dilution of pre-existing abundances in the case of matter domination (MD)
(Co. et al. (2015), Cirelli et al. (2016), Bishara et al. (2024) and many others)

Production of primordial black holes :

Smaller overdensity threshhold for collapse during MD

(PBH production during matter domination (Harada et al. arXiv: 1609.01588), PBH
production during FOPTs: Y. Gouttenoire and T. Volansky, arXiv: 2305.04942)

Gravitational Waves: Could impact the spectrum of GW expected

General impact of MD : (Kazunori Nakayama et al. (2008), Boyle and Steinhardt (2008), Seto and Yokoyama (2003), D'Eramo
and Schmitz (2019)....)
More specific to FOPTs: (Ellis et al. (2019) and (2020) )



Why does it matter ?

undergoes FOPT

produces DM via

-

Example: Dark Matter Phase-in

based on: [2504.10593] with C. Benso and F. Kahlhoefer
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Scalar decays afterwards to SM bath non-renormalizable interaction
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https://www.arxiv.org/abs/2504.10593
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Question: What is the equation of state of
the Universe after a supercooled phase
transition?



Step I: Analytical understanding ... SKIT

e Build some analytical understanding of the equation of state:
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e Assume a generic polynomial potential and focus on the scalar field dynamics (no T dependence):

[qua’(ion of motion . m

2
in expanding background ¢ = a_2v2¢ +dH¢ = _V:¢ with V(o) = 2¢ @2 - K@S + 04¢4



Step I: Analytical understanding ...

e Build some analytical understanding of the equation of state:
Genem[ [OS For a

inhomogeneous

scalar field:

_ Py _ (K) —(d—2)/d(G) = (V)  with d= #ofspatial dimensions
P (K) +(G) + (V)

e Assume a generic polynomial potential and focus on the scalar field dynamics (no T dependence):

Equa{ion of motion

. o , ¢
in expanding background ¢—a 2v2¢ +dH¢ = —V with V() = qb — qug + @Cb
e Apply the virial theorem to determine a relation between the averaged energy densities: After

percolation, the solution can be approximated by oscillations of the field

Approxima’(e around the minimum
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Step I: Analytical understanding ... ST

e Build some analytical understanding of the equation of state:

G | Eod f
fen:m e W — p_¢ _ <K> B (d B 2)/d <G> B <V> with d = # of spatial dimensions
in omogeneous ,0¢ <K> —I— <G> _|_ <V>
scalar field:

e Assume a generic polynomial potential and focus on the scalar field dynamics (no T dependence):

Equa{ion of motion . 929 . _ m?b , . )
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e Apply the virial theorem to determine a relation between the averaged energy densities: After
percolation, the solution can be approximated by oscillations of the field

Approxima’(e around the minimum
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e We find a simplified expression: w=d!
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Step II: Let a computer do it LUl

2
. — . _ m
Solve on the lattice: ¢ —a™2V?0 + dH¢ = —V4 with  V(¢) = 7%52 — k¢’ + ag’
Example: 2D simulation with random nucleation
and static background
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x|mg" |
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Step II: Let a computer do it = LUl

m

Solve on the lattice: ¢ — a_2§2¢ +dH¢ = —Vys with V(g) = 2¢ »° — kp° + ad?

Example: 2D simulation with random nucleation

The EoS can be determined from the and static background

evolution of the energy densities: P _ (K) — (d —2)/d(G) — (V) .
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(K) ~ (G) + (V) is fullfilled!
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Step II: Let a computer do it

ST

Solve on the lattice: ¢ — a_2§2¢ +dH¢ = —Vys with V(g) = 2¢ »° — kp° + ad?

The EoS can be determined from the

evolution of the energy densities: L _ P _ (K)—(d—2)/d(G) — (V)
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The lattice results show an equation of state value between

matter and radiation domination.

Example: 2D simulation with random nucleation
and static background
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14



: A{]]
What determines the EoS?

(Step lll: Let a computer do it again and again)

Summarized results for the EoS after percolation

Systematic study of the simulation results for bubble (141 and 152 simulations)

collisions in 1, 2 and 3 spatial dimensions

1.0
Varying the initial bubble separation to reach ditterent bubble 0.8-
wall velocities: '
S
Larger bubble separation i 0.6
— more relativistic bubble walls 3
— more energy in gradients v 0.4
— closer to radiation domination
0.2 1
010 1 | 1
0 10 20 30

Rm]/Rini 5
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What determines the EoS?

(Step llI: Let a computer do it again and again)

Summarized results for the EoS after percolation

Systematic study of the simulation results for bubble (141 and 152 simulations)

collisions in 1, 2 and 3 spatial dimensions

1.0
| - | | d=2
Varying the initial bubble separation to reach ditterent bubble 0.8-
wall velocities: ' — d=1
=
Larger bubble separation i 0.6
— more relativistic bubble walls 3
— more energy in gradients v 0.4
— closer to radiation domination
0.2 -
What about predictivity? Is it possible to determine 0.0 1 | ]
a function w(7v,) ? 0 10 20 30

Rcu]/Rini ~ Vi 6



Determination of Lorentz factor

We track the wall thickness during the

expansion of 1D bubbles to confirm the
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Step IV: develop more analytical understanding... SKIT

Move to fourier space and re-write the previous expressions in terms of the power spectrum
($d) = Ps(k)(2m)°6 (k + ')

We introduce the dimensionless power spectrum

kd
(2m)

Ay(k) = Sq_1Py(k), with Sq_1 =27Y2/T'(d/2)

With some simplitications, one can re-express the energy densities in terms of the power

spectrum:

o alG) o, [dn k(k/a)’Ag(k)

K) " Jdink (m3+ (k/a)*) Ag(h)
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Step IV: develop more analytical understanding...

Move to fourier space and re-write the previous expressions in terms of the power spectrum
($d) = Ps(k)(2m)°6 (k + ')

We introduce the dimensionless power spectrum

kd
(2m)

Ay(k) = Sq_1Py(k), with Sq_1 =27Y2/T'(d/2)

With some simplitications, one can re-express the energy densities in terms of the power

spectrum:

w=d 17 _ g1 [dInk(k/a)” Ay (k)
K) " Jdink (m3+ (k/a)*) Ag(h)

Is it possible to determine a function w(7,) ?
Maybe if we find determine an analytic form for the dimensionless PS in terms of the lorentz factor of the wall 7
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Step V: Study the power spectrum

Evolution of the power spectrum before and after

collision/percolation (results of 3D simulation)
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Step V: Study the power spectrum SKIT

Evolution of the power spectrum before and after
collision/percolation (results of 3D simulation)
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Step V: Study the power spectrum SKIT

We have performed checks using 2D simulations. These show

Evolution of the power spectrum before and after that the peak dissapears with higher resolution.
collision/percolation (results of 3D simulation)
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The peak seems to be a lattice artifact. The power spectrum follows instead a simple broken power law.
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Conclusions and outlook

Immediately after a first order phase transition we tind that:
Larger bubble separation
— more relativistic bubble walls
— more energy in gradients
— closer to radiation domination
An analytically motivated function tor w(v.) will follow.

It thermalization is very slow, the expansion will eventually suppress the gradients
and might still allow for a purely matter-dominated epoch.

Detailed results on the evolution of the EoS with expansion are upcoming.
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