Automatizing the path from Lagrangian to Higgs physics constraints

Scalars 2025

Wojciech Kotlarski, Alexander Voigt

work supported by the National Science Centre (Poland) grant 2022/47/D/ST2/03087

Motivation

- Many BSM models predict existence of new scalars, especially "Higgses"
- Realistic models must also contain a SM-like Higgs boson
- In lack of direct BSM signatures Higgs boson(s) might become our only handle on BSM physics
 - strong constraints on BSM models
 - requirement for an accurate prediction of Higgs boson properties in BSM models
 - and an easy way to compare them with experimental data

FlexibleSUSY in a nutshell

- There are codes like 2HDMC, SPHENO, SOFTSUSY or SUSPECT that calculate mass spectra and various observables for a predefined model (THDM in case of 2HDMC and MSSM/NMSSM in remaining cases).
- FLEXIBLESUSY is a spectrumgenerator generator - creates a code analogue to abovementioned programs but for an arbitrary BSM model.
- Use known results for a generic QFT. Don't recalculate what you don't have to from the ground.
- Streamlining study of BSM phenomenology, reducing time needed to study a new model from years to weeks. No hand written code, less place for errors.

Program flow

- Analytic calculation: particle content + Lagrangian ⇒ tadpole equations, self-energies, mass matrices, RGEs, vertices etc.
- Creates code for numerical evaluation of various observables
 - 1-loop pole masses and mixing matrices (in specific models higher corrections are available)
 - − observables: muon (g-2)_μ, lepton's EDMs, $1\rightarrow 1$ 'y, $b\rightarrow sy$, scalar decays
 - soon: $l \rightarrow l$ ' conversion in nuclei, $l \rightarrow 3l$

FLEXIBLEDECAY overview

- Fully automated scalar decays evaluation in an almost arbitrary BSM model. Tested on SM, real singlet extended SM, type II THDM, MSSM/CMSSM, MRSSM and many more.
- Works as an add-on to FLEXIBLESUSY spectrum-generator generator. Almost no extra configuration needed by a user.

```
FSCalculateDecays = True; turning on decays for becayParticles = {hh, Ah, Hpm, Su, Sd, Se, Sv}; the MSSM
```

You run FS as before.

- Generic decays are handled at the leading order (**both** tree-level and loop-induced processes are handled)
- Special treatment of scalar and pseudoscalar Higgs decays
 - higher order SM corrections from literature
 - genuine 1L BSM corrections in the decoupling renormalization scheme in preparation (see talks by J. Lang and J. Wuensche)
 - precision comparable with state of the art codes like HDECAY

What you get (singlet+SM example)

```
Block DCINFO
         FlexibleSUSY
         2.6.1
     5
         SSMMhInput
     9
         4.14.3
DECAY
              25
                                        # hh(1) decays
                     3.20846016E-03
                        2
                                                   \# BR(hh(1) \rightarrow barFd(3) Fd(3))
     5.82089643E-01
                                    -5
                                                   # BR(hh(1) -> conjVWp VWp)
     2.10479150E-01
                        2
                                   -24
                                               24
                                                   # BR(hh(1) -> VG VG)
     8.56684916E-02
                                    21
                                               21
     6.19432803E-02
                        2
                                   -15
                                               15
                                                   \# BR(hh(1) \rightarrow barFe(3) Fe(3))
     2.87673651E-02
                        2
                                                   \# BR(hh(1) \rightarrow barFu(2) Fu(2))
                                    -4
                        2
                                                   # BR(hh(1) -> VZ VZ)
     2.67950080E-02
                                    23
                                               23
                                    22
                                               22
                                                   # BR(hh(1) -> VP VP)
     2.29059815E-03
                                    22
                                                   \# BR(hh(1) \rightarrow VP VZ)
     1.48172847E-03
                                               23
     2.64726402E-04
                                    -3
                                                3
                                                   \# BR(hh(1) \rightarrow barFd(2) Fd(2))
                        2
     2.19292886E-04
                        2
                                   -13
                                               13
                                                   # BR(hh(1) -> barFe(2) Fe(2))
DECAY
              35
                     8.56617420E-01
                                        # hh(2) decays
```

HiggsTools

- Succesor of HiggsBounds and HiggsSignals
- Consists of two parts:
 - HiggsSignals: checks SM-like
 Higgs
 - HiggsBounds: checks BSM Higgses
- Example: SM-like Higgs with perturbed coupling to charm quarks
- Some care needed in interpreting χ² from HiggSignals
- Latest detabases (HS v1.2, HB v1.6). Latest HS has 159 dof

Barh et al. [arXiv:2210.09332]

Lilith

- A Python library for constraining new physics from Higgs signal strength measurements.
- It is similar in spirit to HiggsTools (even allows for the same input).
- There's a difference in implemented analysis. The latest database (called latestRun2 contains analysis from 36 and 137 fb⁻¹ data samples).
- LatestRun2 has 53 dof.

Construction of effective couplings

■ Effective couplings (normalised to SM) are constructed from partial widths

$$\kappa^2 \equiv \frac{\Gamma(H \to AB)_{\rm BSM}}{\Gamma(h \to AB)_{\rm SM, m_h = m_H}}$$

meaning we lose information about the sign. The CP properties are correctly tracked. Limited to masses between ~1 and ~650 GeV.

New output block

DIOCK NOWHALIZEDEFFRIGGSCOOPLINGS				
PDG 0 0	2 5	0	0	2.33429130E-03
contains a	25	-1	1	2.60004739E-01
partial width for	25	-2	2	3.60808433E-01
a SM-like Higgs	25	-3	3	2.58715570E-01
with a given	25	-4	4	3.60805762E-01
BSM mass	25	-5	5	2.57589220E-01
	25	-6	6	3.60800617E-01
	25	-11	11	2.57231012E-01

RIACL MORMAI TOFOFFFHICCSCOILDI TNCS

The input chain

HiggsTools/Lilith interface

- Using HiggsTools or Limith from FlexibleSUSY is totally transparent to the user
- Howto:
 - install HiggsTools and/or Lilith
 - point FlexibleSUSY to their location during configuration
 - you're good to go

```
models/MRSSM2/run_MRSSM2.x --slha-input-file=BMP1.in \
--higgsbounds-dataset=hbdataset-master \
--higgssignals-dataset=hsdataset-main \
--lilith-db=Lilith/data/latestRun2.list
```

HiggsTools/Lilith output

■ HiggsTools output

Block HIGGSSIGNALS 1.5900000E+02 # number of degrees of freedom 1.57662766E+02 $\#\chi^2$ 3 1.51551655E+02 # SM χ^2 for mh = 125.250000 GeV # p-value 4.70965484E-02 Block HIGGSBOUNDS 25 1 # LHC13 [vbfH, HW, Htt, H, HZ] > [gamgam] from 1811.08459 2.38307377E-01 25 2 5.84526557E-01 # expRatio 35 1 7.11468251E-01 # LHC8 [vbfH, HW, Htt, H, HZ] > [bb, tautau, WW, ZZ, gamgam] 35 2 3.57914871E+00 # expRatio

Lilith output

```
Block LILITH
```

```
1 5.3000000E+01 # number of degrees of freedom
2 6.06908417E+01 # \chi^2
3 5.47825089E+01 # SM \chi^2 for mh = 125.090000 GeV
4 5.21220908E-02 # p-value
```

HiggsTools vs. Lilith

We set 3% mass uncertainty for HT

Lilith has a hardcoded limit $m_h \in [123, 128]$ GeV

HiggsTools vs. Lilith

after artificially restricting HT to m_h ∈ [123, 128] GeV

a genuine effect from difference in implemented experimental analyses

Conclusions and outlook

- Streamlining comparison of Higgs sector of **your** favourite model with experimental data
- The publication documenting the code will appear this month. In the meantime, you can grab the code from here.
- We are happy to assist you in setting the code up for your particular model.
- Further improvements:
 - constraining charged (singly and doubly) Higgses (only HiggsBounds)
 - higher order BSM corrections to SM-like Higgs decays will be available soon
 - 2-loop corrections in the 0-momentum approximation to Higgs boson mass (from SARAH)