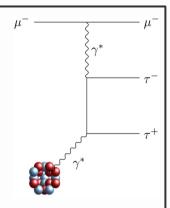
Muon-Induced Di-Tau Production as a Probe of New (Pseudo)scalars

Sebastian Trojanowski National Centre for Nuclear Research (NCBJ) AstroCeNT, Nicolaus Copernicus Astronomical Center (CAMK PAN)

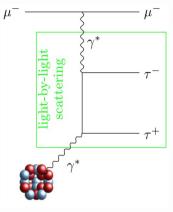
> SCALARS 2025 25/09/2025

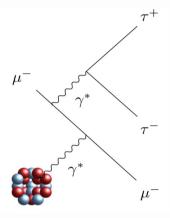


Outline

- Muon-induced Di-Tau Production Process
 - Process in the SM
 - Potential new physics effects
 - Experiments

BSM examples


- Leptophilic scalar
- Lepton Flavor Violating ALPs
- O New physics in the $\gamma \tau \tau$ vertex; connections to (g-2),


 $\mu N \rightarrow \mu \tau \tau N PROCESS$

SM predictions

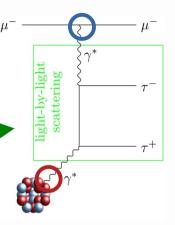
- Two main types of diagrams
- Dominant Bethe-Heitler

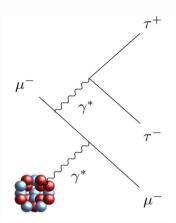
Muon ISR & FSR

SM predictions

- Two main types of diagrams
- Dominant Bethe-Heitler

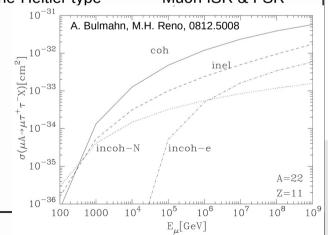
$$d\sigma = \frac{4\pi M_t}{2\sqrt{\lambda_s}} A_{\alpha\beta} B_{\mu\nu}^{\alpha\beta} W^{\mu\nu} \frac{e^8}{q^4 Q^4} \delta^4(k + q - k_1 - p_+ - p_-) d^4 q$$

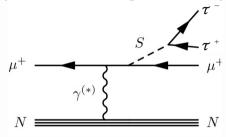

$$\times \frac{d^3 k_1}{2k_1^0 (2\pi)^3} \frac{d^3 p_+}{2p_+^0 (2\pi)^3} \frac{d^3 p_-}{2p_-^0 (2\pi)^3}$$


Muonic vertex

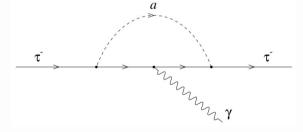
Light-by-light scattering – sensitive to $\gamma \tau$

Hadronic vertex – sensitive to nucleon/nuclear form factors

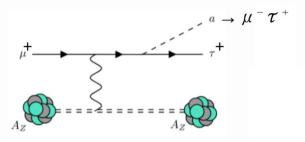

Coherent process dominates


Bethe-Heitler type

Muon ISR & FSR



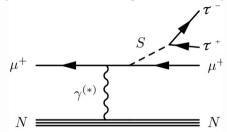
New physics & muon-induced di-tau production


A) Bremsstrahlung followed by decay to τ

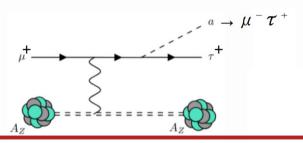
C) Modifications of the $\gamma \tau \tau$ vertex (a_{τ}, d_{τ})

B) Muon charge flip due to LFV interactions

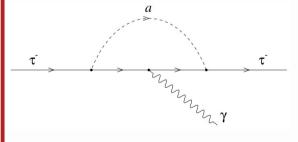
D) Modifications of the $2 \rightarrow 4$ scattering rates


& kinematics

less attractive: no heavy med.


New physics & muon-induced di-tau production

A) Bremsstrahlung followed by decay to τ



THIS TALK

B) Muon charge flip due to LFV interactions

C) Modifications of the $\gamma \tau \tau$ vertex (a_{τ}, d_{τ})

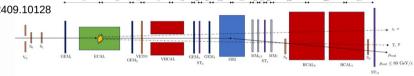
D) Modifications of the $2 \rightarrow 4$ scattering rates

& kinematics

Z'?

direct analogy with neutrino tridents

less attractive: no heavy med.


Experiments: high-energy muon beams

- Ongoing: NA64-μ
 - 160 GeV μ beam dumped on lead-scintillator target material (projected 10¹³ MOT)
 - O Missing energy / momentum technique NA64-μ, 2409.10128
- Ongoing & future: FASER & SND@LHC
 - FASER collaboration: BSM sensitivity study for PBC benchmarks prior to FASER approval
 - O Up to a few TeV μ , both μ + and μ ("mixed")
 - O Precision high-energy (TeV) muon physics possible

Experiments: high-energy muon beams

- Ongoing: NA64-μ
 - O 160 GeV μ beam dumped on lead-scintillator target material (projected 10¹³ MOT)
 - O Missing energy / momentum technique NA64-μ, 2409.10128

- Ongoing & future: FASER & SND@LHC
 - O FASER collaboration: BSM sensitivity study for PBC benchmarks prior to FASER approval
 - O Up to a few TeV μ , both μ + and μ ("mixed")
 - O Precision high-energy (TeV) muon physics possible

FASER, 2207.11427

- Further future (?): FPF@HL-LHC; Muon Collider & preparations
 - O Proposed Forward Physics Facility (FPF)@ HL-LHC (up to a few TeV μ , both μ + and μ -)
 - O Muno dump @ Muon Collider (1.5-5 TeV μ , 10¹⁶ MOT for ~1h MAP operation, separate μ + and μ -)
 - O Single high-energy muon beam enough to realize the search discussed here
 - \bigcirc Idea: μ TRISTAN, 1 TeV μ ⁺ beam; Y. Hamada etal, 2201.06664

μ TARGET MĂĞNET.

C. Cesarotti, 2202.12302

Muon beam dump @ MuCol 10²⁰ MOT)

Idea: operate with active target for a fraction of time $(10^{16} - 10^{18} \, \text{MOT})$

EXAMPLES

Leptophilic dark sectors

(a-2)u & neutrino masses: E. Ma etal. 0110146 Pheno: M. Bauer, P. Foldenauer, J. Jaeckel, 1803.05466 (a-2)u & DM: J. Heeck, A. Thapa, 2202,08854 Cosmology: M. Escudero et al. 1901.02010 & many more...

Gauging one of the SM global symmetries: L_{μ} - L_{τ} , L_{e} - L_{τ} , L_{μ} - L_{e}

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} - \frac{1}{4} Z'^{\alpha\beta} Z'_{\alpha\beta} + \frac{m_{Z'}^2}{2} Z'_{\alpha} Z'^{\alpha} + Z'_{\alpha} J^{\alpha}_{\mu-\tau}, \quad \text{with} \quad J^{\alpha}_{\mu-\tau} = g_{\mu-\tau} \left(\bar{\mu} \gamma^{\alpha} \mu + \bar{\nu}_{\mu} \gamma^{\alpha} P_L \nu_{\mu} - \bar{\tau} \gamma^{\alpha} \tau - \bar{\nu}_{\tau} \gamma^{\alpha} P_L \nu_{\tau} \right)$$

- Additionally motivated by (g-2)_u & other anomalies, could be DM mediator, rich pheno
- Leptophilic scalars

$$\mathcal{L} \supset \frac{1}{2} (\partial_{\mu} S)^2 - \frac{1}{2} m_S^2 S^2 - \sum_{\ell=0}^{\infty} g_{\ell} S \bar{\ell} \ell \qquad \qquad \frac{c_i}{\Lambda} S \bar{L}_i H E_i$$

(q-2)µ: C.-Y. Chen etal, 1511.04715, B. Batell etal, 1606.04943 NA64µ: C.-Y. Chen, J. Kozaczuk, Y.-M. Zhong, 1807.03790 Electron beam dumps: L. Marcisiano et al, 1812.03829 & more...

- Minimal Flavor Violation (MFV) $_{\rightarrow}$ $g_e:g_{\mu}:g_{ au}=m_e:m_{\mu}:m_{ au}$ G. D'Ambrosio, G.F. Giudice, G. isidori, A. Strumia, 0207036
- **Lepton Flavor Violation (LFV) and ALPs**

B. Batell etal (with ST), 2407.15942

$$\mathcal{L}\supset -i\frac{a}{\Lambda}\sum_{i,j}\bar{\ell}_i[(m_j-m_i)v_{ij}+(m_j+m_i)a_{ij}\gamma^5]\ell_j \qquad \qquad \qquad \mathcal{L}\supset -ig_{\mu\tau}a\bar{\mu}\left[\sin\theta+\cos\theta\,\gamma^5\right]\tau+\mathrm{h.c.}$$

$$-\frac{\partial_\mu a}{\Lambda}\sum_{\bar{f}_i\gamma^\mu(v_{ij}^f-a_{ij}^f\gamma_5)f_j} \qquad \qquad \qquad \mathcal{L}\supset -ig_{\mu\tau}a\bar{\mu}\left[\sin\theta+\cos\theta\,\gamma^5\right]\tau+\mathrm{h.c.}$$
LFV ALPS: M. Bauer etal, 1908.00008
C. Cornella etal, 1911.06279
L. Calibbi etal, 2006.04795

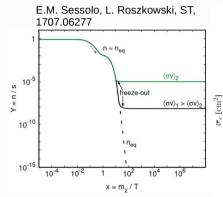
Potential clear signature of new physics

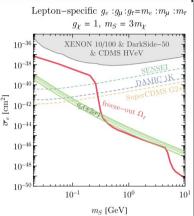
C. Cornella etal, 1911.06279 L. Calibbi etal, , 2006.04795 H. Davoudiasl etal, 2112.04513

& more...

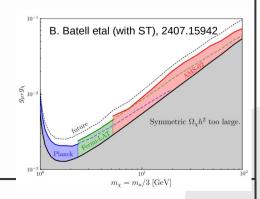
Leptophilic (pseudo)scalars & dark matter

Leptophilic scalar + dark matter (DM)

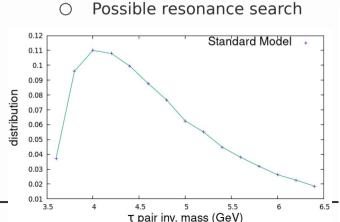

$$\mathcal{L} \supset -g_{\chi} S \bar{\chi} \chi$$

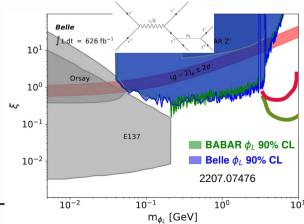

- Thermal relic target (freeze out)
- O Annihilations into muons or taus, or **secluded**, $x \overline{x} \rightarrow SS$
- O Yukawa-like couplings, $\chi e \rightarrow \chi e$ scatterings suppressed

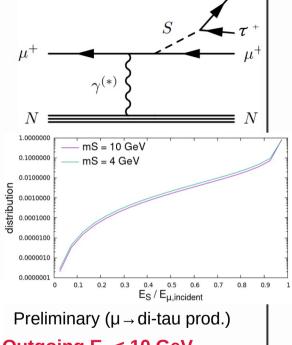
LFV ALPs + dark matter


$$\mathcal{L} \supset -i rac{C_{\chi}}{\Lambda_{\chi}} \, 2 m_{\chi} a \bar{\chi} \gamma^5 \chi = -i g_{\chi} a \bar{\chi} \gamma^5 \chi$$

- O Annihilations into $\mu \tau$ or secluded $\chi \overline{\chi} \rightarrow aa$
- O For $\chi \overline{\chi} \rightarrow \mu \tau$, strong DM indirect detection bounds, but...
- ... can be asymmetric DM
- O Relic density + DM indirect det. constrain low couplings




C.-Y. Chen etal, 1807.03790



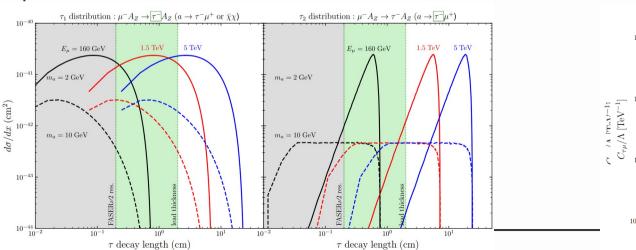
Search for leptophilic scalar

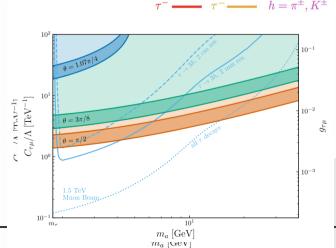
- S brem (2 → 3)
 - High-energy incident muon to produce heavy S
 - \bigcirc Heavy S carries away most of incident μ energy (soft outgoing μ)
 - Different than in the SM process
- S decays dominantly & promptly into τ τ
 - O Above the di-tau threshold, assuming Yukawa-like couplings
 - Invariant mass of the di-tau system reconstructed from muons

Outgoing E_{μ} < 10 GeV

Resonance

detector


 ν_{τ}


thin target

tracking

LFV ALPs: muon charge flip signature

- Probe LFV ALPs via muon charge flip
 - 50% chance to flip
 - \bigcirc τ ID needed & incident muon charge
 - O O(mm-cm) track precision to reconstruct both intermediate τ tracks before they decay
 - \bigcirc Final state contains additional charged mesons or muons from τ decays
 - O Close the gap between $(g-2)_{\mu}$ and DM bounds with intense ~1TeV μ beam

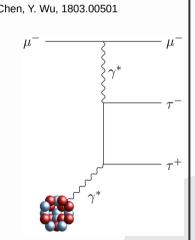
Photon-tau-tau vertex & (g-2)_{\tau}

• General gauge-invariant $\gamma \tau \tau$ vertex

$$\begin{split} \langle f(p_-)\bar{f}(p_+)|\,J^\mu(0)\,|0\rangle = \\ e\,\bar{u}(p_-) \left[\gamma^\mu\,F_1 + \frac{1}{2m_f} (i\,F_2 + F_3\gamma_5)\sigma^{\mu\nu}q_\nu + \left(q^2\gamma^\mu - q^\mu\not q\right)\gamma_5 F_A \right] v(p_+) \\ \text{charge} & \text{dipole} \\ \text{anomalous magnetic moment} \\ F_2(0) = a_f; \quad \mu_f = (1+a_f)\frac{e}{2m_f} \end{split}$$

• a_{τ} could be measured in the zero-momentum transfer limit; naive BSM sensitivity $a_{\tau}/a_{\mu} \sim m_{\tau}^2/m_{\mu}^2$

S. Eidelman, M. Passera, 0701260


- ullet Schwinger term (basic SM prediction) $a_{ au}^{ ext{ iny SM}}=117\,721\,(5) imes10^{-8}$
- ullet CMS bounds $a_{ au}=0.0009^{+0.0032}_{-0.0031}$ cms pas smp-23-005

F₂ as a probe of new physics

- In general, the form factors F_2 , F_3 are not probed at strictly $q^2 \rightarrow 0$
- The q² dependence might indicate new physics

$$\Re[F_2(\theta)] = -\frac{|y_\ell|^2}{4\pi^2 \sinh \theta} \int_0^1 dx \int_0^{\frac{\theta}{2}} dy \frac{x^3 - kx^2}{x^2 + z(1-x) \left(\frac{\sinh y}{\sinh \frac{\theta}{2}}\right)^2} \exp\left(\frac{1-x^2 + z(1-x)}{2}\right) \exp\left(\frac{\sinh y}{\sinh \frac{\theta}{2}}\right)^2 \exp\left(\frac{1-x^2 + z(1-x)}{2}\right) \exp\left(\frac{1-x^$$

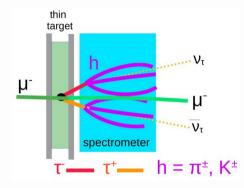
- β is the tau velocity in the τ τ rest frame
- As $\beta \to 0$, $q^2 \to 0$ (on-shell photons)
- F_2 with BSM scalar contribution decreases for growing β , but...
 - ...the decrease is slower than the QED form factor in the SM
- Impact on the di-tau production rate and kinematics

τ reconstruction & Optimal Observable

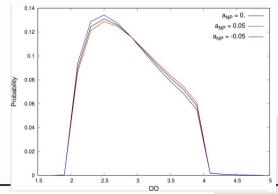
D. Atwood etal, 9201381

- Reconstructing τ lepton momenta
 - Measuring all charged tracks in the final state and tau tracks
 - Overconstrained system → access to all momenta

 J.H. Kuhn. 9307269
- Invariant matrix element reconstruction
- Optimal Observable (best constraining power)


$$\mathcal{OO}^{(i)} \equiv \frac{(M_1^i/\text{GeV})}{M_0^i}$$

$$|\mathcal{M}|_{a_{ au}}^{2} \propto M_{0}^{a} + M_{1}^{a} \frac{a_{ au}^{NP}}{2m_{ au}} + M_{2}^{a} \left(\frac{a_{ au}^{NP}}{2m_{ au}}\right)^{2}$$


 a_{-}^{NP} is F₂ form factor contribution from BSM

- OO distribution → powerful tool to constrain new physics

 See also 1803.00501
- In practice: limited by momentum resolution (smearing)

Preliminary: precision of O(10%) SM value of a_{τ}

Summary

<u>Process</u>	Muon-induced Di-Tau Production	- *	$ au^+$
<u>Requirements</u>	High-energy & intense muon beam	Y .	
	Dedicated detectors (active target, τ ID)		
<u>Experiments</u>	One muon beam is sufficient, but can be realized in the forward region of future co	lliders	
	Intense muon beams currently: SPS, LHC; future: MuCol?, µTRISTAN?		
<u>Characteristics</u>	Dominant: coherent scattering off nucleus (relatively clean)		
	Rare in the SM, within the reach of future experiments		
BSM	Leptophilic dark sectors: - Resonant search for S → ττ - Muon charge flip (LFV)		
	Impact via \mathbf{a}_{τ}		

Summary

<u>Process</u>	Muon-induced Di-Tau Production		7+
<u>Requirements</u>	High-energy & intense muon beam		γ*
	Dedicated detectors (active target, τ ID)		
<u>Experiments</u>	One muon beam is sufficient, but can be realized in the forward region of future colliders		lers
	Intense muon beams currently: SPS, LHC; future: MuCol?, µTRISTAN?		
	Dominant: coherent scattering off nucleus (relatively clean)		
<u>Characteristics</u>	Rare in the SM, within the reach of future experiments		
<u>BSM</u>	Leptophilic dark sectors: - Resonant search for S $\rightarrow \tau\tau$		
	- Muon charge flip (LFV)	1) LFV dark matter & neutron stars Jaime Hoefken Zink talk on Wed	

Funded with the NCN grant: No. 2021/42/E/ST2/00031

2) Muon-induced forward neutrinos & BSM

Jyotismita Adhikary talk on Wed

BACKUP