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General Two-Higgs Doublet Model

In the Higgs basis, the general CP-conserving 2HDM scalar potential is given by
[Davidson and Haber, PRD'05; Hou and Kikuchi, EPL'18]
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> The usual Z2 symmetry is dropped = FCNC at tree-level

> Many parameters and extra processes arise

> EWBG, Absence of FCNC (e.g. t — chias), ... could be explained
> Sub-TeV H, A, H* bosons may still exist
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.72.035004
https://iopscience.iop.org/article/10.1209/0295-5075/123/11001

General Yukawa Interaction

Higgs-fermion interactions can be described by [Davidson and Haber, PRD’05]
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> A\ matrices: diagonal, fixed by fermion mass
> pf matrices: (complex) non-diagonal lead to FCNC

> Alignment (cy = 0) suppresses FCNC for h but allows FCNC for H and A
> p;; are severely constrained by flavor physics
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.72.035004

Flavor Constraints
> Flavor constraints on py; and py. are not particularly strong
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B. Altunkaynak et al., PLB'15

> Constraints on p;. are weak. An upper bound on p;. was found to be
lptel $1.3 (1.7) for mg+ =300 (500) GeV [A. Crivellin et al., PRD'13]

> pre and py can still be large and (each) drive EWBG
[See, e.g., Fuyuto, Hou, Seneha, PLB’18]

> The LHC offers the best way to test and constrain p;. and py
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https://www.sciencedirect.com/science/article/pii/S0370269315007753
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.094031
https://www.sciencedirect.com/science/article/pii/S0370269317309711?via%3Dihub

t — ch Search Limits

For ¢, # 0, LHC t — ch searches set significant constraint on py..

Observed (expected) 95% CL upper limits

Signal B(1 — H) |C:’:{;“’|
tHu 2.8(3.0)x107* 0.71(0.73)
tHe 3.3(3.8)x107* 0.76 (0.82)

ATLAS, EPJC'24

Analysis B(t — Hu) B(t — Hc)
Y observed (expected) observed (expected)
H — bb [24] 0.079 (0.11)% 0.094 (0.086)%
H — v [25] 0.019 (0.031)% 0.073 (0.051)%
Leptonic (this analysis) 0.072 (0.059)% 0.043 (0.062)%
Combination 0.019 (0.027)% 0.037 (0.035)%
CMS, PRD'25
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> |pie| 2 0.5 is excluded at 95% CL for ¢, = 0.1

> The limit diminishes for ¢, < 0.1 and vanishes for ¢, = 0 (alignment)
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https://link.springer.com/article/10.1140/epjc/s10052-024-12994-1
https://journals.aps.org/prd/abstract/10.1103/95q6-vvlp
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Limits on py

> LHC direct searches for pp — tbH+ — tbtb strongly constrain py
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> Limits are interpreted assuming B(Ht — tb) = 100% [Hou and MK, PRD'24]
> Constraints from ATLAS H+ — WTh search are very weak [ATLAS, JHEP'25]

> Constraints from the SM-like Higgs boson properties are checked using the
HiggsSignals module of HiggsTools

5/11


https://link.springer.com/article/10.1007/JHEP06(2021)145
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.L011702
https://link.springer.com/article/10.1007/JHEP02(2025)143

LHC Searches for G2HDM

With ¢ — ch alignment-suppressed, it is natural to pursue cg — tH/tA — ttc/ttt
(same-sign top/triple top), which is controlled by s, ~ 1.
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https://www.sciencedirect.com/science/article/pii/S0370269324000170?via%3Dihub
https://link.springer.com/article/10.1007/JHEP12(2023)081

Benchmark Scenario

> Strong first-order EWPT in 2HDM, as needed for EWBG, favors a scenario

with m g+ ~ my4 ~ 400-500 GeV and m4 —mpg 2 200 GeV
Dorsch et al., PRL'14; Basler et al., JHEP'17

> A — ZH is identified as the smoking-gun signature of 2HDM with FOEWPT
> We consider my =200 GeV, and m4 = my+ € [300,600] GeV.
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> We choose m4 = 450(500) GeV as a benchmark point, denoted BP (BP’),

where B(A — ZH) ~ 87(90)%.
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.211802
https://link.springer.com/article/10.1007/JHEP02(2017)121

Signal vs. Background
Signal: gg = A— ZH = (T~ tc— ¢t~ (twvbe
BKG: WZ+j, tZj, ttZ +j, tW +j, tZe, WWZ, WZZ, tth, titt
Simulation: MadGraph5_aMCONLO (y/s = 14 TeV) + Pythia + Delphes
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Signal vs. Background
For event selection, we require the presence of
> at least 2 jets (N; > 2), with PJ > 20 GeV and |n;| < 2.5,

> with at least one of them b-tagged (N, > 1),
> exactly 3 leptons (N, = 3), with P23 >80,30,20 GeV,
> ERSS > 20 GeV, 280 < Hr < 500 GeV (to maximize the significance),
> and 70 < my+,~ < 110 GeV (Z-pole).

Process Cross section

BP (BP)) 0.87(0.53)

Wz 0.81

tZj 0.36

ttz 0.17

ttw 0.036

tZc 0.034

WWwWZ 0.008

WZzZzZ 0.007

tth 0.002

tttt < 0.001

Significance (Z): For £ =140 fb~!, Z ~7.90 (5.00) for BP (BP’). Assuming
e = 10%, BP (BP’) yields Z ~ 4.40 (2.80).
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Conclusion
Exotic Higgs bosons are actively searched for at the LHC

However, it might be difficult to detect at the LHC using conventional pro-
duction and/or decay channels

Exotic decays, like A — ZH and Ht - W*H, can provide crucial probes

Searches for A — ZH or H — Z A in the ¢/~ t¢ final state could probe the
G2HDM with flavor-violating couplings

Complementary searches for HT — WTH/A in the ¢{Tuvtc final state can
probe the G2HDM further [Hou and MK, PRD’25]

In case my ~ma ~ my+, Wl‘lich can also yield a FOEWPT [Bernon, Bian,
Jiang, JHEP'18], pp — bH™T — btb, bcb signals are proposed [Ghosh, Hou, Modak,
PRL'20; Fang, Hou, Kao, MK, arXiv:2510.XXXXX]

Observation would point to a very different 2HDM and perhaps shed light on
the mechanism behind the BAU
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.L031701
https://link.springer.com/article/10.1007/JHEP05(2018)151
https://link.springer.com/article/10.1007/JHEP05(2018)151
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.221801
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.221801

Conclusion
Exotic Higgs bosons are actively searched for at the LHC

However, it might be difficult to detect at the LHC using conventional pro-
duction and/or decay channels

Exotic decays, like A — ZH and Ht - W*H, can provide crucial probes

Searches for A — ZH or H — Z A in the ¢/~ t¢ final state could probe the
G2HDM with flavor-violating couplings

Complementary searches for HT — WTH/A in the ¢{Tuvtc final state can
probe the G2HDM further [Hou and MK, PRD’25]

In case my ~ma ~ my+, Wl‘lich can also yield a FOEWPT [Bernon, Bian,
Jiang, JHEP'18], pp — bH™T — btb, bcb signals are proposed [Ghosh, Hou, Modak,
PRL'20; Fang, Hou, Kao, MK, arXiv:2510.XXXXX]

Observation would point to a very different 2HDM and perhaps shed light on
the mechanism behind the BAU

Thank you!
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.111.L031701
https://link.springer.com/article/10.1007/JHEP05(2018)151
https://link.springer.com/article/10.1007/JHEP05(2018)151
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.221801
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.221801

Other Constraints
G2HDM is also subject to the following constraints:
> Unitarity, perturbativity and vacuum stability
> EW precision constraints through oblique parameters S, T and U using the
following fit result:

S=-0.05+£0.07, T=0.00£0.06, pgr=0.93 [PDG]
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.030001
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