Probing the general 2HDM with flavor violation through $A \rightarrow ZH$

Mohamed Krab

Department of Physics, National Taiwan University

Based on Phys.Rev.D 111 (2025) 11 in collaboration with Prof. George Wei-Shu Hou

Scalars 2025: Higgs bosons and cosmology September 24, 2025

General Two-Higgs Doublet Model

In the Higgs basis, the general $\it CP$ -conserving 2HDM scalar potential is given by [Davidson and Haber, PRD'05; Hou and Kikuchi, EPL'18]

$$V(\Phi, \Phi') = \mu_{11}^{2} |\Phi|^{2} + \mu_{22}^{2} |\Phi'|^{2} - (\mu_{12}^{2} \Phi^{\dagger} \Phi' + \text{H.c.}) + \frac{\eta_{1}}{2} |\Phi|^{4} + \frac{\eta_{2}}{2} |\Phi'|^{4} + \eta_{3} |\Phi|^{2} |\Phi'|^{2} + \eta_{4} |\Phi^{\dagger} \Phi'|^{2} + \left[\frac{\eta_{5}}{2} (\Phi^{\dagger} \Phi')^{2} + (\eta_{6} |\Phi|^{2} + \eta_{7} |\Phi'|^{2}) \Phi^{\dagger} \Phi' + \text{H.c.} \right],$$
(1)

with

$$\Phi = \begin{pmatrix} G^+ \\ (v + h_1 + iG^0)/\sqrt{2} \end{pmatrix}, \qquad \Phi' = \begin{pmatrix} H^+ \\ (h_2 + iA)/\sqrt{2} \end{pmatrix}. \tag{2}$$

- ightharpoonup The usual Z_2 symmetry is dropped \implies FCNC at tree-level
- Many parameters and extra processes arise
- \triangleright EWBG, Absence of FCNC (e.g. $t \rightarrow ch_{125}$), ... could be explained
- \triangleright Sub-TeV H, A, H^{\pm} bosons may still exist

General Yukawa Interaction

Higgs-fermion interactions can be described by [Davidson and Haber, PRD'05]

$$\mathcal{L}_{Y} = -\frac{1}{\sqrt{2}} \sum_{f=u,d,\ell} \bar{f}_{i} \left[\left(\lambda_{ij}^{f} s_{\gamma} + \rho_{ij}^{f} c_{\gamma} \right) h \right]$$

$$+ \left(\lambda_{ij}^{f} c_{\gamma} - \rho_{ij}^{f} s_{\gamma} \right) H - i \operatorname{sgn}(Q_{f}) \rho_{ij}^{f} A P_{R} f_{j}$$

$$- \bar{u}_{i} \left[(V \rho^{d})_{ij} P_{R} - (\rho^{u\dagger} V)_{ij} P_{L} \right] d_{j} H^{+}$$

$$- \bar{\nu}_{i} \rho_{ij}^{\ell} P_{R} \ell_{j} H^{+} + \operatorname{H.c.}.$$

$$(3)$$

- $\triangleright \lambda^f$ matrices: diagonal, fixed by fermion mass
- ho ho^f matrices: (complex) non-diagonal lead to FCNC
- ightharpoonup Alignment $(c_{\gamma} pprox 0)$ suppresses FCNC for h but allows FCNC for H and A
- \triangleright ρ_{ij} are severely constrained by flavor physics

Flavor Constraints

 \triangleright Flavor constraints on ρ_{tt} and ρ_{tc} are not particularly strong

- B. Altunkaynak et al., PLB'15
- \triangleright Constraints on ρ_{tc} are weak. An upper bound on ρ_{tc} was found to be $|\rho_{tc}|\lesssim 1.3~(1.7)$ for $m_{H^+}=300~(500)$ GeV $\,$ [A. Crivellin et al., PRD'13]
- ho ho_{tc} and ho_{tt} can still be large and (each) drive EWBG

[See, e.g., Fuyuto, Hou, Seneha, PLB'18]

 \triangleright The LHC offers the best way to test and constrain ρ_{tc} and ρ_{tt}

$t \rightarrow ch$ Search Limits

For $c_{\gamma} \neq 0$, LHC $t \rightarrow ch$ searches set significant constraint on ρ_{tc} .

Signal	Observed (expected) $\mathcal{B}(t \to Hq)$	95% CL upper limits $ C_{u\phi}^{qt,tq} $
tHu	$2.8(3.0) \times 10^{-4}$	0.71 (0.73)
tHc	$3.3(3.8) \times 10^{-4}$	0.76 (0.82)

ATLAS, EPJC'24

Analysis	$\mathcal{B}(t \to Hu)$ observed (expected)	$\begin{array}{c} \mathcal{B}(t \to Hc) \\ \text{observed (expected)} \end{array}$	
$H \rightarrow b\overline{b}$ [24]	0.079 (0.11)%	0.094 (0.086)%	
$H \rightarrow \gamma \gamma$ [25]	0.019 (0.031)%	0.073 (0.051)%	
Leptonic (this analysis)	0.072 (0.059)%	0.043 (0.062)%	
Combination	0.019 (0.027)%	0.037 (0.035)%	

CMS, PRD'25

- $\mid \rho_{tc} \mid \gtrsim 0.5$ is excluded at 95% CL for $c_{\gamma} = 0.1$
- \triangleright The limit diminishes for $c_{\gamma} < 0.1$ and vanishes for $c_{\gamma} = 0$ (alignment)

Limits on ρ_{tt}

ightharpoonup LHC direct searches for $pp o ar t b H^+ o ar t b t ar b$ strongly constrain ho_{tt}

- ho Limits are interpreted assuming $\mathcal{B}(H^+ o t ar{b}) = 100\%$ [Hou and MK, PRD'24]
- ightharpoonup Constraints from ATLAS $H^+
 ightarrow W^+ h$ search are very weak [ATLAS, JHEP'25]
- ▶ Constraints from the SM-like Higgs boson properties are checked using the HiggsSignals module of HiggsTools

LHC Searches for G2HDM

With $t\to ch$ alignment-suppressed, it is natural to pursue $cg\to tH/tA\to tt\bar c/tt\bar t$ (same-sign top/triple top), which is controlled by $s_\gamma\simeq 1$.

	Observed (expected) mass limit [GeV]				
	without	with	with		
	interference	interference	interference		
	$m_{\rm A}$ or $m_{\rm H}$	m_{A}	$m_{ m H}$		
$ ho_{ m tu}$					
0.4	920 (920)	1000 (1000)	950 (950)		
1.0	1000 (1000)	1000 (1000)	950 (950)		
$ ho_{ m tc}$					
0.4	no limit	340 (370)	290 (320)		
1.0	770 (680)	810 (670)	760 (620)		

CMS, PLB'24

ATLAS, JHEP'23

Benchmark Scenario

 \triangleright Strong first-order EWPT in 2HDM, as needed for EWBG, favors a scenario with $m_{H^+}\approx m_A\approx 400$ –500 GeV and $m_A-m_H\gtrsim 200$ GeV

Dorsch et al., PRL'14; Basler et al., JHEP'17

- ightharpoonup A
 ightharpoonup ZH is identified as the smoking-gun signature of 2HDM with FOEWPT
- \triangleright We consider $m_H=200$ GeV, and $m_A=m_{H^+}\in[300,600]$ GeV.

▶ We choose $m_A = 450\,(500)$ GeV as a benchmark point, denoted BP (BP'), where $\mathcal{B}(A \to ZH) \simeq 87\,(90)\%$.

Signal vs. Background

Signal: $gg \to A \to ZH \to \ell^+\ell^-t\bar{c} \to \ell^+\ell^-\ell^+\nu b\bar{c}$

BKG: WZ + j, tZj, $t\bar{t}Z + j$, $t\bar{t}W + j$, tZc, WWZ, WZZ, $t\bar{t}h$, $t\bar{t}t\bar{t}$

Simulation: MadGraph5_aMC@NLO $(\sqrt{s}=14\ \text{TeV})+\text{Pythia}+\text{Delphes}$

Signal vs. Background

For event selection, we require the presence of

- \triangleright at least 2 jets $(N_i \ge 2)$, with $P_T^j \ge 20$ GeV and $|\eta_j| < 2.5$,
- \triangleright with at least one of them b-tagged $(N_b \ge 1)$,
- \triangleright exactly 3 leptons $(N_{\ell}=3)$, with $P_T^{\ell_1,\ell_2,\ell_3} \geq 80,30,20$ GeV,
- \triangleright $E_T^{\rm miss} > 20$ GeV, $280 < H_T < 500$ GeV (to maximize the significance),
- ▶ and $70 < m_{\ell^+\ell^-} < 110$ GeV (Z-pole).

Process	Cross section
BP(BP')	0.87(0.53)
WZ	0.81
tZj	0.36
$tar{t}Z$	0.17
$t ar{t} W$	0.036
tZc	0.034
WWZ	0.008
WZZ	0.007
$t ar{t} h$	0.002
$t \bar{t} t \bar{t}$	< 0.001

Significance (\mathcal{Z}): For $\mathcal{L}=140~{\rm fb^{-1}}$, $\mathcal{Z}\simeq7.9\sigma$ (5.0 σ) for BP (BP'). Assuming $\epsilon_B=10\%$, BP (BP') yields $\mathcal{Z}\simeq4.4\sigma$ (2.8 σ).

Conclusion

- ▶ Exotic Higgs bosons are actively searched for at the LHC
- ▶ However, it might be difficult to detect at the LHC using conventional production and/or decay channels
- ightharpoonup Exotic decays, like A o ZH and $H^+ o W^+H$, can provide crucial probes
- ightharpoonup Searches for A oup ZH or H oup ZA in the $\ell^+\ell^-t\bar{c}$ final state could probe the G2HDM with flavor-violating couplings
- ightharpoonup Complementary searches for $H^+ o W^+ H/A$ in the $\ell^+ \nu t \bar c$ final state can probe the G2HDM further [Hou and MK, PRD'25]
- ▶ In case $m_H \approx m_A \approx m_{H^+}$, which can also yield a FOEWPT [Bernon, Bian, Jiang, JHEP'18], $pp \to bH^+ \to bt\bar{b}, bc\bar{b}$ signals are proposed [Ghosh, Hou, Modak, PRL'20; Fang, Hou, Kao, MK, arXiv:2510.XXXXX]
- ▷ Observation would point to a very different 2HDM and perhaps shed light on the mechanism behind the BAU

Conclusion

- ▶ Exotic Higgs bosons are actively searched for at the LHC
- ▶ However, it might be difficult to detect at the LHC using conventional production and/or decay channels
- \triangleright Exotic decays, like $A \to ZH$ and $H^+ \to W^+H$, can provide crucial probes
- ightharpoonup Searches for A oup ZH or H oup ZA in the $\ell^+\ell^-t\bar{c}$ final state could probe the G2HDM with flavor-violating couplings
- ightharpoonup Complementary searches for $H^+ o W^+ H/A$ in the $\ell^+ \nu t \bar c$ final state can probe the G2HDM further [Hou and MK, PRD'25]
- ▶ In case $m_H \approx m_A \approx m_{H^+}$, which can also yield a FOEWPT [Bernon, Bian, Jiang, JHEP'18], $pp \to bH^+ \to bt\bar{b}, bc\bar{b}$ signals are proposed [Ghosh, Hou, Modak, PRL'20; Fang, Hou, Kao, MK, arXiv:2510.XXXXX]
- ▷ Observation would point to a very different 2HDM and perhaps shed light on the mechanism behind the BAU

Other Constraints

G2HDM is also subject to the following constraints:

- ▶ Unitarity, perturbativity and vacuum stability
- ightharpoonup EW precision constraints through oblique parameters $S,\,T$ and U using the following fit result:

$$S = -0.05 \pm 0.07$$
, $T = 0.00 \pm 0.06$, $\rho_{ST} = 0.93$ [PDG]

