Contribution ID: 27 Type: not specified ## Neutrino masses and mixed dark matter from doublet and singlet scalars Wednesday, September 24, 2025 3:30 PM (15 minutes) We consider the extension of the Standard Model with an inert scalar doublet, three right-handed neutrinos, and singlet scalar fields, φ and S. In this model, neutrino masses are zero in the limit of the unbroken Z_4 discrete symmetry. We show that when the singlet scalar field φ gets a VEV, the Z_4 symmetry is broken to Z_2 , and neutrino masses are generated at one-loops due to the mixings between the neutral components of the inert scalar doublet and the singlet scalar field S. There is a dark matter candidate from the lightest neutral scalar field, which is a mixture of the inert scalar doublet and the singlet scalar field S, in general. The S_4 breaking mass terms are constrained by electroweak precision data and direct detection (DD) bounds for dark matter, favoring small mixings or almost degenerate masses for the DM scalars. As a result, we discuss the implications of the results for small neutrino masses and DD-safe dark matter. Primary author: PADHAN, Rojalin (Chung-Ang University, Seoul) **Presenter:** PADHAN, Rojalin (Chung-Ang University, Seoul) Session Classification: Parallel 3 Track Classification: Parallel