

Vector-like T Bounds at the LHC: Impact of 2HDM-II

Ech-chaouy Mohamed

In collaboration with:
R. Benbrik, M. Boukidi, M. Berrouj, S. Moretti, K. Salime
arXiv:2512.xxxx

ECH-CHAOUY Mohamed VLT Bounds September 24, 2025 1/14

Motivation

- Vector-like quarks (VLQs) are hypothetical particles whose left- and right-handed components transform identically under the SU(2) symmetry.
- VLQs arise in several models, including composite Higgs theories, Little Higgs models, and Two-Higgs-Doublet Models (2HDMs).

$$T_{L,R}^{0}$$
, $B_{L,R}^{0}$ (singlets),
 $(X T^{0})_{L,R}$, $(T^{0} B^{0})_{L,R}$, $(B^{0} Y)_{L,R}$ (doublets),
 $(X T^{0} B^{0})_{L,R}$, $(T^{0} B^{0} Y)_{L,R}$ (triplets).

- They have not been detected at the LHC. Current searches exclude VLQ masses up to $m_{\rm VLQ} \simeq 1.7$ TeV.
- 2HDMs extended by VLQs predict new beyond-the-Standard-Model (BSM) decay channels, which can dominate over the Standard Model channels.

ECH-CHAOUY Mohamed VLT Bounds September 24, 2025 2/14

2HDM Potential

2HDM potential under \mathbb{Z}_2 symmetry:

$$\begin{split} V_{2HDM}^{Z_2} &= m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \text{h.c.}) \\ &+ \frac{1}{2} \lambda_1 |\Phi_1|^4 + \frac{1}{2} \lambda_2 |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 \\ &+ \frac{1}{2} \lambda_5 [(\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.}], \end{split} \tag{1}$$

Higgs doublets in 2HDM framework:

$$\Phi_{1} = \begin{pmatrix} \Phi_{1}^{+} \\ \frac{1}{\sqrt{2}} (\nu_{1} + \rho_{1} + i\eta_{1}) \end{pmatrix}, \quad \Phi_{2} = \begin{pmatrix} \Phi_{2}^{+} \\ \frac{1}{\sqrt{2}} (\nu_{2} + \rho_{2} + i\eta_{2}) \end{pmatrix}, \quad \tan \beta = \frac{\nu_{2}}{\nu_{1}}. \quad (2)$$

- \Rightarrow Two CP-even Higgs bosons: H, h, $H^{SM} = h \sin(\alpha \beta) H \cos(\alpha \beta)$
- ⇒ One CP-odd Higgs boson: A
- \Rightarrow A pair of charged Higgs bosons: H^{\pm}

ECH-CHAOUY Mohamed VLT Bounds September 24, 2025 3/14

2HDM-II + Vector-Like T Quark (VL*T*)

The general renormalizable Yukawa Lagrangian, describing fermion interactions and mass terms, is:

$$-\mathcal{L} \supset y^u \, \bar{Q}_L^0 \tilde{H}_2 u_R^0 + y^d \, \bar{Q}_L^0 H_1 d_R^0 + M_u^0 \bar{u}_L^0 u_R^0 + M_d^0 \bar{d}_L^0 d_R^0 + \text{h.c.}$$
 (3)

The relationship between the charge 2/3 weak and mass eigenstates can be expressed as follows:

$$\begin{pmatrix} t_{L,R} \\ T_{L,R} \end{pmatrix} = U_{L,R}^{u} \begin{pmatrix} t_{L,R}^{0} \\ T_{L,R}^{0} \end{pmatrix} = \begin{pmatrix} \cos \theta_{L,R}^{u} & -\sin \theta_{L,R}^{u} e^{i\phi_{u}} \\ \sin \theta_{L,R}^{u} e^{-i\phi_{u}} & \cos \theta_{L,R}^{u} \end{pmatrix} \begin{pmatrix} t_{L,R}^{0} \\ T_{L,R}^{0} \end{pmatrix} . \quad (4)$$

From diagonalization of the mass matrix, we get:

$$\tan \theta_R^q = \frac{m_q}{m_Q} \tan \theta_L^q \quad \text{(singlets, triplets)},$$

$$\tan \theta_L^q = \frac{m_q}{m_Q} \tan \theta_R^q \quad \text{(doublets)},$$
(5)

ECH-CHAOUY Mohamed VLT Bounds September 24, 2025 4/14

LHC VLT Bounds

Considering only the SM+VLQ, the T quark decays via three channels:

$$T \rightarrow Wb$$
, $T \rightarrow Zt$, and $T \rightarrow ht$.

These satisfy:

$$\mathcal{BR}(T \to Wb) + \mathcal{BR}(T \to Zt) + \mathcal{BR}(T \to ht) = 1$$

Figure: LHC 95% exclusion on VLT in (m_T, κ) plane: green for pair production, orange for single production limits. R. Benbrik, M. Boukidi, M. Ech-chaouy, S. Moretti, K. Salime, Qi-Shu Yan, JHEP 03 (2025) 020.

6/14

Recasted VLT Bounds

If VLT decays to BSM final states, we get a new constraint:

$$\mathcal{BR}(T \to Wb) + \mathcal{BR}(T \to Zt) + \mathcal{BR}(T \to ht) + \mathcal{BR}(T \to BSM) = 1$$

In 2HDM+VLT:

$$\mathcal{BR}(T \to BSM) = \mathcal{BR}(T \to H^+b) + \mathcal{BR}(T \to Ht) + \mathcal{BR}(T \to At)$$

ECH-CHAOUY Mohamed VLT Bounds September 24, 2025

2HDM-II + T

Parameter space scans:

2HDM Parameters:

- $m_h = 125.1 \, \text{GeV}$
- ► m_H: [130, 800] GeV
- ► *m*_A: [100, 800] GeV
- ► m_{H+}: [600, 1000] GeV
- $ightharpoonup s_{\beta-\alpha}=1$
- \blacktriangleright tan β : [0.5, 20]

• VLT Parameters:

- ► *m*_T: [800, 2000] GeV
- ► Singlet T:
 - s_i : [-0.25, 0.25]
- ► Doublet TB:
 - $s_{D}^{u/d}$: [-0.25, 0.25]

2HDM-II+(T)

• Upper panel:

- ► It shows the excluded region (left to the red line) in $(m_T, \tan \beta)$ plane.
- ▶ Upper black hatched region is excluded by $H, A \rightarrow \tau \tau$ search.
- ► Lower black hatched region is excluded by $H^+ \rightarrow tb$ search.

• Lower panel:

- It shows the recasted observed m_T limit (red dashed contours) in the $(m_{H^{\pm}}, \tan \beta)$ plane.
- ► The limit shows slight dependence on $m_{H^{\pm}}$, and high dependence on tan β .

2HDM-II + (TB)

- Observed m_T upper limit scatter in the $(\mathcal{BR}(T \to H^+b), \mathcal{BR}(T \to Wb))$ plane (left panel) and in $(\mathcal{BR}(T \to BSM), \mathcal{BR}(T \to Wb))$ plane (right panel).
- $\mathcal{BR}(T \to BSM) = \mathcal{BR}(T \to H^+b) \approx 96\%$.
- $\mathcal{BR}(T \to BSM)$ is driven mainly by $\mathcal{BR}(T \to H^+b)$.
- m_T^{obs} can reach ~ 0.98 TeV.

2HDM-II + (TB)

Upper panel:

- ► It shows the excluded region (left to the colored line) in $(m_T, \tan \beta)$ plane.
- For three mixing configurations $s_R^u = s_R^d = 0.1$ (red line), $s_R^u = 0.01$, $s_R^d = 0.1$ (black line), and $s_R^u = 0.1$, $s_R^d = 0.01$ (blue).
- ► At high tan β , when $s_R^d > s_R^u$ leads to significant relaxation of m_c^{obs} .

• Lower panel:

- ► In the lower panel, m_T^{obs} (red contours) relaxes as $\tan \beta$ is getting high values.
- ▶ With slight dependence on $m_{H^{\pm}}$ at low tan β and high at its getting larger.

Vector-like T Bounds at the LHC

2HDM-II + (TB)

- The Figure shows m_T^{obs} in the (s_R^u, s_R^d) plane with $\mathcal{BR}(T \to BSM)$ shown as black dashed contour lines with $\tan \beta = 3.5$.
- $s_R^d < s_R^u \Rightarrow Z_L^{H^+} > Z_R^{H^+}$ and $Z_L^{H^+}$ is scaled by $\cot \beta$ thus $\mathcal{BR}(T \to BSM) \setminus$ when $\tan \beta > 1$.
- $s_R^d > s_R^u \Rightarrow Z_R^{H^+} > Z_L^{H^+}$ and $Z_R^{H^+}$ is scaled by $\tan \beta$ thus $\mathcal{BR}(T \to BSM) \nearrow$ when $\tan \beta > 1$.

Conclusion

- 2HDM-II with singlet T
 - ▶ $\mathcal{BR}(T \to BSM)$ reaches up to 60%, weakening the upper limit from ~ 1.45 to ~ 1.3.
- 2HDM-II with doublet TB
 - ▶ $\mathcal{BR}(T \to BSM)$ reaches up to 100%, weakening the upper limit from ~ 1.55 TeV to ~ 0.98 TeV.
 - ▶ Due to $\mathcal{BR}(T \to BSM)$ being driven by $\mathcal{BR}(T \to H^+b)$.
 - ▶ $T \rightarrow H^+b$ can be explored at low mass values.

Thank you