Enhancing prospects of sub-GeV majoron at intensity frontier experiments through flavor-changing processes

Scalars 2025

September 24th

Krzysztof Jodłowski

Institute for Basic Science, Center for Theoretical Physics of the Universe, Daejeon

Based on:

 $\underline{\mathrm{KJ}}$, Chih-Ting Lu (in prep)

ACDM: The Dark Universe

- Neutrinos are the only directly known part of the Dark Universe
- However, precise nature of neutrinos is *unknown* (Dirac/Majorana), as is their mass generation mechanism.
- Seesaw is an elegant UV completion of the Weinberg operator, pointing towards large scale $\Lambda \sim 10^{13}$ GeV for $m_{\nu} \sim 1$ eV: $\frac{v^2}{\Lambda} \nu_L^T C \nu_L$

Dirac

Majorana

$$(L\Phi) = \nu_L \phi^0 - e_L \phi^+$$

1. Effective Majorana mass term

Seesaw

$$\mathcal{L} = -\frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

Small neutrino masses are obtained, $m_i \simeq m_D^2/M_R \to \text{need } m_D \ll M_R$.

Type I from breaking $U(1)_L$.

Figure 1. Feynman diagram generating Majorana masses in Type I, II and III seesaw mechanism.

Figure 1 illustrates three UV-complete seesaw realizations of the same Weinberg operator of (2), differing from each other in the nature of the messenger fields involved. In the left-panel diagram of Fig. 1, corresponding to type-I seesaw, the field N_R is a heavy fermion which transforms as a singlet under $SU(2)_L$ and carries no $SU(3)_C$ or $U(1)_Y$ charge. In the middle diagram corresponding to type-II seesaw, the field Δ^0 is the neutral component of a heavy scalar multiplet transforming as triplet under $SU(2)_L$. In the right-panel diagram corresponding to type-III seesaw, Σ_R^0 is the neutral component of the heavy fermion multiplet transforming as triplet under $SU(2)_L$ symmetry.

Type I from breaking $U(1)_L$

neutrino masses

Neutrino mass: Dirac or Majorana?

• Dirac Neutrinos (Higgs Mechanism)

$$\mathcal{L} = -\frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & 0 \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} + \text{h.c.} \qquad m_i = m_D \sim 10^{-2} \,\text{eV}$$

Majorana Neutrinos (Seesaw Mechanism)

$$\mathcal{L} = -\frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} + \text{h.c.} \qquad \frac{m_i \sim m_D^2/M_R \sim 10^{-2} \, \text{eV}}{\text{for } M_R \gg m_D = \mathcal{O}(m_W)}$$

 M_R may be explained by the spontaneous Global U(1)L symmetry breaking Majoron model

Majorana neutrinos do not conserve the lepton number but preserve $B-L \to \text{baryon}$ asymmetry via leptogenesis

• $U(1)_L$ pNGb is naturally long-lived, flavor violating, and with ALP couplings to gauge bosons.

Singlet Majoron

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + i\overline{\nu_R}\gamma_{\mu}\partial_{\mu}\nu_R + \partial_{\mu}\Sigma^{\dagger}\partial_{\mu}\Sigma - \lambda_D\Phi^*\overline{E_L}\nu_R$$

$$-\frac{\lambda_R}{2}\overline{\nu_R^c}\Sigma\nu_R - \lambda_{\Sigma}\left(\Sigma^{\dagger}\Sigma - \frac{f^2}{2}\right)^2 + \text{ESB}$$
Chikashige, Mohapatra, Peccei, Phys. Lett. 98B, 265 (1981)

Schechter and J. W. F. Valle, Phys. Rev. D 25, 774 (1982)

Singlet
$$\Sigma = \frac{1}{\sqrt{2}} (f + \sigma(x) + i J(x))$$
 with $LN = -2$.

Since $f \gg v$, $\sigma(x)$ decouples and only the phase remains. ESB terms $\to J$ is pNGB.

At tree level, J interacts only with neutrinos directly and through mixing. Other couplings are generated at 1 and 2-loops.

> Chikashige, Mohapatra, Peccei, Phys. Lett. 98B, 265 (1981) Heeck, Patel, Phys. Rev. D 100, 095015 (2019)

$$\frac{\nu_R}{\nu_R} = -\frac{iM_R}{2f} J \overline{\nu_R^c} \nu_R + \text{h.c.}$$

Majoron interactions

$$\Gamma(J \to q\bar{q}) \simeq \frac{3m_J}{8\pi} \left| \frac{m_q}{8\pi^2 v} T_3^q \text{tr} K \right|^2$$

$$K = \frac{m_D m_D^{\dagger}}{v f} = \lambda_D \lambda_D^{\dagger} \frac{v}{f}$$

Davidson–Ibarra parametrization

$$--J$$
 n_j
 l
 n_j
 γ

$$\Gamma(J \to 2\gamma) \simeq \frac{\alpha^2}{4096\pi^7} \frac{m_J^3}{v^2} K'^2$$

$$\Gamma(J \to l\bar{l}') \simeq \frac{m_J}{8\pi} \left(\left| \frac{m_l + m_{l'}}{16\pi^2 v} (\delta_{ll'} T_3^l \text{tr} K + K_{ll'}) \right|^2 + \left| \frac{m_l - m_{l'}}{16\pi^2 v} K_{ll'} \right|^2 \right)$$

Some recent works on majoron

1. Dark Matter and the Hubble Tension

Majoron as a warm or decaying dark matter, which could help alleviate the Hubble tension.

- 2304.04430, 2402.04368, 2306.01222, 2211.08538
- 2. Gravitational waves from lepton number breaking

Stochastic background of gravitational waves from first-order phase transition.

- 2406.04404, 2403.11580, 2310.15830, 2203.04322
- 3. Novel signatures in neutrinoless double beta decay

Continuous energy spectrum instead of a shark peak.

- 1802.08019, 2305.18526, 2210.03848
- 4. ALP-like searches for decays or missing energy.
- 2202.12317, 2310.02709, 2306.05943, 2207.03713

Production from flavor violating decays at beam dumps, FASER

$$\tau \to \mu J$$
$$\mu \to eJ$$

Vector axial coupling interplay

$$\mathcal{L} \supset \frac{\partial_{\mu} a(x)}{f} \bar{\mathcal{E}} \gamma^{\mu} \left(C_V + C_A \gamma_5 \right) \mathcal{E} + \frac{\alpha_{EM}}{4\pi} \frac{a(x)}{f} F \tilde{F} ,$$

Define $R = C_A^{diag}/C_A^{off-diag}$ and compute decay width. Use Heeck, Patel, Phys. Rev. D 100, 095015 (2019) for parton couplings and Cheng, Li, Salvioni JHEP 01 (2022) 122 for ChPT.

For $R \sim O(0.1-10), J \rightarrow \mu\mu$ dominates in the sub-GeV region.

Leading production mechanism comes from taon decays: $\tau \to \mu J$, $\tau \to e J$

$$\Gamma(\ell_{\alpha} \to \ell_{\beta} X) = \frac{m_{\alpha}^{3}}{16\pi\Lambda^{2}} \times O(0.1)$$

In beam dumps, taons are produced from D meson decays. One can also use muons, $\mu \to eJ$. For example, $N_{\mu} \sim 10^{11}$ at FASER2.

Preliminary results

Taons provide leading production mechanism for sub-GeV Majoron, covering parameter space in-between SN1987 and FV searches.

Axions and ALPs

$$\mathcal{L} \supset \theta \, G \tilde{G} = \partial_{\mu} K^{\mu}, \quad K_{\mu} = \theta \, \frac{\alpha_{s}}{8\pi} \epsilon_{\mu\nu\rho\sigma} \left(A_{a}^{\nu} G_{a}^{\rho\sigma} - \frac{g_{s}}{3} f^{abc} A_{a}^{\nu} A_{b}^{\rho} A_{c}^{\sigma} \right)$$

This is <u>CP odd</u> topological term - it's a total derivative. But K_{μ} is not gauge-inv and its integral is nonzero. It measures the change of winding number of gauge configurations; θ is a global property of the state (θ vacuum).

Promote $\theta \to a(x)$: dynamical pseudoscalar field associated with global, anomalous $U(1)_{PQ}$. Non-perturbative QCD effects provide a nontrivial potential and axion relaxes to CP-conserving minimum.

$$\theta < 10^{-10}$$

Dark Axion Portal: pseudoscalar-vector dim-5 portal

Ejlli, 1609.06623, Kaneta, Lee, Yun, 1611.01466

$$G_{a\gamma\gamma}=rac{e^2}{4\pi^2}rac{PQ_\Phi}{f_a}N_Cig[Q_\psi^2ig]$$
 In this setup, there is too-large kinetic mixing and $G_{a\gamma\gamma'}< G_{a\gamma\gamma'}$ unless $e'\ll e$. \to need a pair of fermions in the loop.
$$G_{a\gamma\gamma'}=rac{ee'}{4\pi^2}rac{PQ_\Phi}{f_a}N_Cig[D_\psi Q_\psiig]+arepsilon G_{a\gamma\gamma'}$$
 $G_{a\gamma\gamma'}=rac{e'^2}{4\pi^2}rac{PQ_\Phi}{f_a}N_Cig[D_\psi^2ig]+2arepsilon G_{a\gamma\gamma'}$ $G_{a\gamma\gamma'}=rac{e'^2}{4\pi^2}N_Cig[D_\psi^2ig]+2arepsilon G_{a\gamma\gamma'}$

Dark Axion Portal - some recent works

- Dark photon DM
 - Kaneta, Lee, Yun 1704.07542, Gutiérrez et al. 2112.11387
- Cosmological relaxation
 - Choi, Kim, Sekiguchi 1611.08569; Domcke, Schmitz, You 2108.11295
- $(g-2)_{\mu}$
 - deNiverville, Hye-Lee, Seo, 1806.00757; Ge, Ma, Pasquini 2104.03276
- Axion-photon-dark photon oscillation
 - Choi, Kim, Sekiguchi 1802.07269; Choi, Lee, Seong, Yun 1806.09508, 1911.00532
- Lab searches displaced vertices, missing energy,...
 - deNiverville, Hye-Lee, Seo 1806.00757, 1904.13061, 2011.03276
- Astrophysical searches supernovae, white dwarves...
 - Arias et al. 2007.12585; Hook, Marques-Tavares, Ristow 2105.06476
- Laser/LSW searches
 - Hye-Lee, Lee, Yi 2201.11906

Dark Matter

- Misalignment mechanism for ALP Peccei, Quinn 1977
- Freeze-in Kaneta, Lee, Yun, 1611.01466 Gutiérrez et al. 2112.11387,
- Freeze-out Arias, Diaz Saez, Jaeckel, JCAP 06 (2025) 060

LLPs at intensity frontier

 e^+e^- colliders

BaBar, Belle, LEP, FCC

Beam dumps, fixed Target, neutrino experiments

SHiP, FASER, CHARM, LSND, MiniBooNE, ...

Dark Axion Portal at intensity frontier

$$\mathcal{L}_{\text{dark axion portal}} = \frac{g_{a\gamma\gamma'}}{2} a F_{\mu\nu} \tilde{F}^{'\mu\nu}$$

<u>KJ</u> Phys. Rev. D 108, 115017

Production

no Primakoff production! Instead, Primakoff upscattering, $\sigma_{\gamma'N\to aN}\propto \alpha_{em}g_{a\gamma\gamma}^2Z^2$.

vector meson decays are *more* efficient than pseudoscalar meson decays

$$\frac{\text{BR}_{V \to a\gamma'}}{\text{BR}_{V \to ee}} = \frac{g_{a\gamma\gamma'}^2 \left((-M^2 + m_a^2 + m_{\gamma'}^2)^2 - 4m_a^2 m_{\gamma'}^2 \right)^{3/2}}{32\pi\alpha_{\text{EM}} M \sqrt{M^2 - 4m_e^2} \left(M^2 + 2m_e^2 \right)},$$

$$\sim M^2$$

Detector

LLP signatures at FASER

• LLP signal inside the decay vessel $-\gamma\gamma$ or $\gamma + X$

- $E_{vis} > 100 \text{ GeV}$
- e^+e^- search: negligible background due to high energies of LLP's
- γ search:
 - neutrino-induced BG minimized by preshower put in front of the calorimeter
 - BG from muon-induced photons vetoed by scintillators detecting a time-coincident muon going through the detector → excess of <u>single-photon</u> events unaccompanied by any muon indicative of new physics

Scattering off electrons

- new-physics-induced neutrino scatterings off electrons producing electron recoils inside the neutrino detector.
- Energy and angular cuts:
 - Electron energy and angular cuts following the DM scattering signature 2101.10338
 - The cuts have been designed to minimize the neutrino-induced BG to the level of O(10) such expected events in FASER $\nu 2$.

ForwArd Search ExpeRiment

FASER - start with LHC RUN3 (2022-2024), $\mathcal{L} = 150 \mathrm{fb}^{-1}$

R = 0.1m, L = 1.5m

FASER2 - start with HL-LHC

 $\mathcal{L} = 3000 \text{fb}^{-1}; R = 1m, L = 5m$

Feng, Gallon, Kling, Trojanowski, 1708.09389 Letter of Intent for FASER: ForwArd Search ExpeRiment at the LHC, 1811.10243; Technical Proposal for FASER: ForwArd Search ExpeRiment at the LHC, 1812.09139

Dark Axion Portal at intensity frontier

$$\mathcal{L}_{\text{dark axion portal}} = \frac{g_{a\gamma\gamma'}}{2} a F_{\mu\nu} \tilde{F}^{'\mu\nu}$$

DAP and Z boson coupling

$$\mathcal{L} \supset \frac{g_{a\gamma\gamma'}}{2} a F_{\mu\nu} \tilde{F}_D^{\mu\nu} + \frac{g_{aZ\gamma'}}{2} a Z_{\mu\nu} \tilde{F}_D^{\mu\nu}$$
, where $g_{aZ\gamma'} = -\tan\theta_W g_{a\gamma\gamma'}$,

$$\mathcal{O}^{\mu\nu}B_{\mu\nu}=c_{\mathrm{w}}\mathcal{O}^{\mu\nu}F_{\mu\nu}-s_{\mathrm{w}}\mathcal{O}^{\mu\nu}Z_{\mu\nu}$$

For full gauge-invariance, one needs to replace photon field with hypercharge.

This allows to probe DAP at <u>Z boson factories</u>. In particular, LEP has already set stringent limits that constrain DM scenarios. KJ, JHEP 2025, 22 (2025)

DAP and Z boson coupling

$$\mathcal{L} \supset \frac{g_{a\gamma\gamma'}}{2} a F_{\mu\nu} \tilde{F}_D^{\mu\nu} + \frac{g_{aZ\gamma'}}{2} a Z_{\mu\nu} \tilde{F}_D^{\mu\nu}$$
, where $g_{aZ\gamma'} = -\tan\theta_W g_{a\gamma\gamma'}$,

DAP and DM from freeze-in

Arias, Diaz Saez, Jaeckel, JCAP 06 (2025) 060

Conclusions

- Nature of neutrino masses provide one of the strongest motivation for physics BSM.
- Type-1 seesaw can be elegantly realized within Majoron singlet model, with Majorana mass occurring due to breaking of U(1) lepton global symmetry.
- We found that taon decays, $\tau \to \mu J$ provide leading production mechanism of sub-GeV majoron at beam dump experiments and we determined their sensitivities. They are competitive with bounds from astrophysics and FV experiments.
- We also studied another ALP model, DAP, which extends the invisible QCD axion by massive dark photon, allowing richer pheno possibilities: multiple DM candidates, relaxation, ...
- We determined leading bounds from intensity frontier experiments: beam dumps, Z boson factories (lepton colliders and LHC), finding coverage of sizable part of parameter space, where correct DM relic density is satisfied.

Dark Axion Portal: pseudoscalar-vector dim-5 portal

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kinetic} - V(\Phi) + y(\Phi\chi\chi^c + \Phi^*\xi\xi^c) + h.c. ,$$

	Q_{EM}	Q_D
χ	2	2
χ^c	-2	-2
ξ	2	-2
$ \xi^c $	-2	2

Introduce 2 pairs of chiral fermions χ and ξ and impose charge-conjugation symmetry which forbids kinetic mixing to all orders in perturbation theory.

$$\chi \longleftrightarrow \xi \qquad \chi^c \longleftrightarrow \xi^c$$

After SSB, the charge assignment leads to vanishing of all couplings but $g_{a\gamma\gamma'}$.

$$\mathcal{L} \supset \frac{\phi(x)}{16\pi^2 f} \left(-\left((eQ_{EM}^{\chi})^2 F_{\mu\nu} \tilde{F}^{\mu\nu} + 2ee_D Q_{EM}^{\chi} Q_D^{\chi} F_{\mu\nu} \tilde{F}_D^{\mu\nu} + (e_D Q_D^{\chi})^2 F_{\mu\nu}^D \tilde{F}_D^{\mu\nu} \right) - \left((eQ_{EM}^{\xi})^2 F_{\mu\nu} \tilde{F}^{\mu\nu} + 2ee_D Q_{EM}^{\xi} Q_D^{\xi} F_{\mu\nu} \tilde{F}_D^{\mu\nu} + (e_D Q_D^{\xi})^2 F_{\mu\nu}^D \tilde{F}_D^{\mu\nu} \right) \right).$$

LLPs at beam dumps

Secondary production on tungsten layers of FASER $\nu 2$ - upscattering of very long-lived LLP₁ into LLP₂ by coherent nucleus scattering

<u>Primary</u> production is limited to the LLP lifetime regime of $d \sim L_{min}$.

Secondary production:
$$LLP_1 + SM \rightarrow LLP_2 + SM$$

Signal due to $LLP_2 \rightarrow LLP_1 +$ visible or $LLP_{1,2} + e^- \rightarrow LLP_2 + e^-$.

Coherent upscattering on nucleus ($\propto Z^2$) mediated by photon exchange is enhanced by the photon propagator $\sim 1/t \rightarrow$ Primakoff-like process for photon-coupled LLPs can be particularly effective.