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Hierarchies in Particle Physics

Axion/ALPsFermion masses

Any new particle mixing with SM (e.g. dark photons)

John Jarnestad/The Royal Swedish Academy of 
Sciences

Wikipedia InternetAPS/Alan Stonebraker

Gauge hierarchy
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What is clockwork?

A mechanism to generate large hierarchies in mass scales or couplings 
from a theory containing no small parameters…

Giudice, McCullough (2016)
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Origins?
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I. Natural Inflation

V = Λ4 [1 − cos ( π
f )]

A pNGB/axion inflaton naturally provides a flat 
direction: Shift symmetry  broken softly 
by a potential:

π → π + c

  : SSB scale / axion decay constant 

 : Soft breaking scale

f
Λ

A plausible scenario requires:

f ≳ MPlanck

Freese et. al. (1990), 

Adams et. al. (1993) 

Freese et. al. (2004)

Super-Planckian decay constant ! — 
questionable theoretical validity ?   

Nature Phys 12, 374 (2016)
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II. Relaxion

The weak scale is selected by dynamical evolution of 
a pNGB

Graham et. al. PRL 115, 221801 (2015)

V(H, π) = (−Λ2 + gΛπ) |H |2 + Vroll + Vbr

Vroll = gΛ2π + g2Λ2 π2

2
+ . . .

Vbr = Λ4 cos(π/f )

In the minimal setup  has to 
roll over a range


  

π

Δπ ∼ Λ/g > MPlanck ≫ f

Super-Planckian excursions again !

Rolling potential

Backreacting potential

Super-Planckian Excursions



A proposed remedy for both —multi-axion potentials

V =
N−1

∑
i=0

Λ4
i [1 − cos ( πi

f
− q

πi+1

f )]
Shift symmetry     A flat direction  πi → πi + q−i c ⟹

Periodicity         Δπflat = 2π 1 + q2 + q4 + ⋯ + q2Nf ∼ 2πqN f

   ⟹ feff ∼ qN f ≫ f

Choi, Im; JHEP01(2016)149 
Choi, Kim, Yun PRD 90, 023545 (2014) 

Kim, Nilles, Peloso JCAP 0501 (2005) 005

 can in principle be sub-Planckianf

q > 1
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Localization on theory space —The clockwork way

Consider a theory of multiple copies of a complex scalar  with nearest neighbour interactions —   Φ

V = −
N

∑
j=0

[λ (Φ†
j Φj − f2)

2] − λ′￼Λ3−q
N−1

∑
j=0

Φ†
j Φ

q
j+1+h.c.

 symmetric, spontaneously broken at a scale U(1)N+1 f Breaks U(1)N+1 → U(1)CW = ∑
j

q−j

(λ′￼ ≪ λ, Λ ≪ f )

 Kaplan, Rattazzi (PRD 93, 085007 (2016))

Giudice, McCullough (JHEP02(2017)036) 
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N
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j=0

[λ (Φ†
j Φj − f2)

2] − λ′￼Λ3−q
N−1

∑
j=0

Φ†
j Φ

q
j+1+h.c.

 symmetric, spontaneously broken at a scale U(1)N+1 f Breaks U(1)N+1 → U(1)CW = ∑
j

q−j

(λ′￼ ≪ λ, Λ ≪ f )

Theory of pNGBs below the SSB scale   :          f Φj → Uj ≡
1

2
f eiπj / f

= −
1
2

m2f2
N−1

∑
j=0

cos
πj − qπj+1

f

Our good old periodic potential !

[m2 ≡ 2(1−q)/2λ′￼Λ3−qf q−1]Vπ = −
m2f2

2 [
N−1

∑
j=0

U†
j Uq

j+1]+h.c.

Has a flat direction due to U(1)CW

 Kaplan, Rattazzi (PRD 93, 085007 (2016))

Giudice, McCullough (JHEP02(2017)036) 
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Closer look at the quadratic terms—

V(2)
π =

m2

2

N−1

∑
j=0

(πj − qπj+1)2

pNGB mass matrix

Mass eigenvalues: m2
n = m2

0, n = 0

1 + q2 − 2q cos( nπ
N + 1 ), otherwise

JHEP02(2017)036

1 massless pseudoscalar a0

 massive pseudoscalars  — N an mn ∼ mq
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With the basis transformation,  , the eigenvectors are:an = ∑
j

Cnjπj

j = 0…N, n = 1…N

Zero mode has exponentially small overlap with  

with an effective decay constant      

πN
feff = qN f ≫ f

Massive modes have nearly similar overlaps with all  

with an effective decay constant      

π′￼s
f (n)
eff ∼ f

a0

an>0

∼ q−N

𝒪(1)

𝒪(1)

……………

U0 U1 U2 U3 UN−1 UN

Theory space lattice —

Sites

⟨a0 |πj⟩ ≡ C0j =
𝒩0

qj
, ⟨an>0 |πj⟩ ≡ Cnj = 𝒩n [q sin

jnπ
N + 1

− sin
( j + 1)nπ

N + 1 ]
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Couplings with an external sector:

ℒint = y
πN

f
𝒪ext

Suppose the CW sector couples to an external operator at the -th site.N

 parameter𝒪(1)

𝒪ext

In the mass basis this results in: ℒint = y [ 𝒩0

qN

a0

f
𝒪ext +

N

∑
n=1

𝒩nq(−1)nsin
nπ

N + 1
an

f
𝒪ext]

f (n)
eff ∼ f

⟨a0 |πj⟩

∼ q−N

𝒪(1)

𝒪(1)

……………

U0 U1 U2 U3 UN−1 UN

Zero mode localized 

towards the -th site 0

E.g., GG̃

Out[�]=

Out[�]=⟨an>0 |πj⟩

     f (0)
eff = qN f ≫ f

q
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What is Clockwork ?

• A mechanism to generate large hierarchies through localization in a theory 
space of multiple fields.


• Basic requirement— near-neighbour interacting fields with mass terms of the 

form:                                   


      — Leads to a correspondence with a 5D linear dilaton theory of gravity.


• Can be generalized to fermions, vector bosons and gravitons.

(πj − qπj+1)
2
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Clockwork QCD Axion M. Farina et. al., (2017); 

S. Bhattacharya, D. Choudhury, SM, T. Srivastava, hep-ph 2409.05983  
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CW

Goal: To have a low-scale PQ breaking



TeV

fPQ
∼



 GeV

fa
≳ 109

Clockwork QCD Axion M. Farina et. al., (2017); 

S. Bhattacharya, D. Choudhury, SM, T. Srivastava, hep-ph 2409.05983  
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Introduce a CW sector:

ℒCW =
N

∑
j=0

[∂μΦj∂μΦj − λ (Φ†
j Φj − f2/2)

2] + λ′￼Λ3−q
N−1

∑
j=0

Φ†
j Φ

q
j+1+h.c.

 copies of a complex scalar   —  copies of  symmetry  N + 1 Φ N + 1 U(1)PQ

SSB at scale         fPQ ≡ f ⟶ Φj =
1

2
(ϕj + f )eiπj/f
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Introduce a CW sector:

ℒCW =
N

∑
j=0

[∂μΦj∂μΦj − λ (Φ†
j Φj − f2/2)

2] + λ′￼Λ3−q
N−1

∑
j=0

Φ†
j Φ

q
j+1+h.c.

 copies of a complex scalar   —  copies of  symmetry  N + 1 Φ N + 1 U(1)PQ

Couple it to the color anomaly at the -th site:N

−
πN

f
GAμνG̃A

μν ⟶ −
a0

qN f
GAμνG̃A

μν

The usual PQ axion 
with decay constant 

 (TeV)f0 ≫ f

GG̃

SSB at scale         fPQ ≡ f ⟶ Φj =
1

2
(ϕj + f )eiπj/f
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How do you get the color anomaly ?  Introduce a set of new coloured fermions  (à la KSVZ) → ΨL,R

Localized PQ charge 

Leads to couplings with  and   as wellγ Z

ℒπvv = − gπgg πNGAμνG̃A
μν − gπγγ πNFμνF̃μν − gπγZ πNFμνZ̃μν − gπZZ πNZμνZ̃μν

gπgg =
αsξ
8πf

, gπγγ =
2NcαEMξY2

Ψ

8πf
, gπγZ =

−4Ncs2
wαEMξY2

Ψ

8πfswcw
, gπZZ =

2Ncs4
wαEMξY2

Ψ

8πfs2
wc2

w
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What’s more?  The ALPs→

ℒπvv = − gπgg πNGAμνG̃A
μν − gπγγ πNFμνF̃μν − gπγZ πNFμνZ̃μν − gπZZ πNZμνZ̃μν

Expand  in the physical basis — the ALPs can couple to gluons, photons and  

with relatively small decay constant 

πN Z
fn ∼ f

Possibility of resonant production at hadron colliders ?

p p → an(+X) → γ γ

p p → an(+X) → Z γ

p p → an(+X) → Z Z

 

gπXX ∝ ⟨an |πN⟩
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• Benchmark I - light ALPs

10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.10
0 5 10 15 20 25

0

0.02

0.04

0.06

Masses, couplings and diphoton cross-sections over the full phase space for 
individual resonances .( s = 13 TeV)

For  GeV,     ,      TeV,    ,    ,      m = 10 q = 2 f = 1 N = 28 ξ = 3 YΨ = 2/3

Small mass splittings 

Δm ∼ 2m/N ≲ 1 GeV

Signatures S. Bhattacharya, D. Choudhury, SM, T. Srivastava, hep-ph 2409.05983  
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QCD axion can be DM via misalignment
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Simulated diphoton invariant mass distribution of the signal

Cumulative Significance = 3.38�

Bin-wise significance estimate from a naive  analysisχ2

Scenario at the  and  LHC :s = 13 TeV ℒ = 138 fb−1

} Kinematic cuts 

and background profile 


adopted from the ATLAS 

diphoton analysis 


2211.04172
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Simulated diphoton invariant mass distribution of the signal

Cumulative Significance = 3.38�

Bin-wise significance estimate from a naive  analysisχ2

A broad resonance — An axion iceberg

Scenario at the  and  LHC :s = 13 TeV ℒ = 138 fb−1

} Kinematic cuts 

and background profile 


adopted from the ATLAS 

diphoton analysis 


2211.04172
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Signal profile for  and  LHC.s = 13 TeV ℒ = 138 fb−1

• Benchmark II : For  GeV,     ,      TeV,    ,    ,      m = 35 q = 2 f = 1 N = 28 ξ = 3 YΨ = 2/3

Cumulative Significance = 2.12�

Bin-wise significance

Relatively larger mass splittings Δm ≲ 2.5 GeV

Multiple closely spaced peaks
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Takeaways

• Clockwork is a neat hierarchy generating mechanism via localization .


• Works for scalars, fermions, vector fields as well as gravitons.


• Many interesting applications - Axions, Dark Matter, flavour hierarchies, neutrino masses, baryogenesis, inflationary cosmology 
etc.


• Most notable application — realization of a QCD axion with a small PQ breaking scale. The associated ALPs could be potentially 
probed at the LHC, HL-LHC and beyond through signatures like broad resonances and multiple closely packed peaks.

The bad and the ugly —- motivates future work:

• Reliance (largely) on global symmetries —better understanding of possible UV completions needed.


• Incompatibility with non-Abelian gauge theories.


• The CW-LD correspondence is a nice feature but not very well explored, needs careful inspection.


• Difficult to derive robust conclusions on the evolution of topological defects for high multiplicity axion models [see 
Long (2018), Higaki et. al.(2016), Lee et. al. (2025)]

The good:
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Dziękuję !
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Backup
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Identifying benchmark points      of the CW sector are free parametersm, q, f



PDG (2023)

109 GeV ≲
qN f

ξ
≲ 1011 GeVLower limit from experimental 


and astro-cosmo observations 
Upper limit from acceptable axion 


abundance in Universe 



PDG (2023)

109 GeV ≲
qN f

ξ
≲ 1011 GeVLower limit from experimental 


and astro-cosmo observations 
Upper limit from acceptable axion 


abundance in Universe 



ℒCW = −
f2

2

Nx, Ny

∑
x,y=0

∂μU†
x, y∂μUx, y +

m2f2

2

Nx−1, Ny−1

∑
x,y=0 [U†

x,yU
q
x+1, y + U†

x, yU
q′￼

x, y+1]+h.c.

⟶ −
1
2

Nx,Ny

∑
x,y=0

∂μπx,y∂μπx,y +
m2

2

Nx−1,Ny−1

∑
x,y=0 [(πx,y − qπx+1,y)2 + (πx,y − q′￼πx,y+1)2] + 𝒪 (π4)

U0,0 U1,0 U2,0 UNx,0

U0,1

U0,2

U0,Ny

U1,1 U2,1 UNx,1

U1,2 U2,2 UNx,2

U1,Ny U2,Ny UNx,Ny

q q q

q q q

q q q

q q q

q′ 

q′ 

q′ 

q′ 

q′ 

q′ 

q′ 

q′ 

q′ 

q′ 

q′ 

q′ 

Axions from a 2D Clockwork D. Choudhury, SM, T. Srivastava, In preparation 
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• Consider a similar KSVZ-type model, now with a 2D clockwork sector

ℒπVV = − gπGG πNx,Ny
GAμνG̃A

μν − gπBB πNx,Ny
BμνB̃μν

m2
nx,ny

= m2

0 nx = 0, ny = 0 ,

(1 + q2 − 2q cos
nxπ

N + 1 ) nx > 0, ny = 0

(1 + q′￼2 − 2q′￼cos
nyπ

N′￼+ 1 ) nx = 0, ny > 0

2 [1 + 1
2 (q2 + q′￼2) − q cos

nxπ
N + 1 − q′￼cos

nyπ

N′￼+ 1 ] nx, ny ≠ 0 .

The QCD axion

Two bands of ALPs with 

suppressed couplings to gluons and photons—

(Long-lived ALPs) -ALPsl

Band of ALPs with unsuppressed couplings 

similar to the 1D case—(Short-lived ALPs) -ALPss

}
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• Phenomenology of the -ALPs is qualitatively similar to that in the 1D model.


• What’s new is the presence of the long-lived ALPs. The dominant production channel 
would be hadron colliders is        enabled by the  mixing terms—

s

h → aLLP aLLP H − Φx,y

ℒΦH = − λΦH

Nx,Ny

∑
x,y=0

Φ†
x,yΦx,yH†H

• Long-lived ALPs are likely to decay beyond the LHC’s main apparatus. However, 
they could be sensitive to displaced-vertex detectors such as the upcoming 
MATHUSLA experiment.
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For  GeV,      ,      TeV,    ,   ,    ,     ,      m = 15 q = q′￼ = 3 f = 1 Nx = 10 Ny = 11 ξ = 3 YΨ = 2/3 λHΦ = 0.03

Branching fractions of the 

SM Higgs decaying to two -ALPs l

Proper decay length of the -ALP. The dominant decay mode is  .l aLLP → gg

Masses in GeV
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Origins?…
Large decay constant from aligned axions

V = Λ4
1 [1 − cos (a1

π1

f
+ a2

π2

f )] + Λ4
2 [1 − cos (b1

π1

f
+ b2

π2

f )]

• The two axion Kim-Nilles-Peloso model —


JCAP 0501 (2005) 005

Only one combination appears in the potential when

a1

a2
=

b1

b2
Alignment condition

28



Λ4 [1 − cos (c
π
f )]

Standard axion potential

Dynamically generated from c
32π2

π(x)
f

FF̃

Axion coupling with the topological term 

of some confining sector

Anomaly coefficient

29
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f
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Axion coupling with the topological term 
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1
32π2 ( π1

f
+ n

π2

f ) FF̃

KNP potential

Λ4 [1 − cos ( π1

f
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π2
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Λ4 [1 − cos (c
π
f )]

Standard axion potential

Dynamically generated from c
32π2

π(x)
f

FF̃

Axion coupling with the topological term 

of some confining sector

1
32π2 ( π1

f
+ n

π2

f ) FF̃

KNP potential

Λ4 [1 − cos ( π1

f
+ n

π2

f )]

Anomaly coefficient

N−1

∑
i=1

Λ4
i [1 − cos ( πi

f
+ n

πi+1

f )]
Multiple confining sectors

π1 π2 πNπ1 π1

SU(k1) SU(k2) SU(kN−1)
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Clockwork as a deconstruction

Posit a warped five dimensional geometry of the form:

ds2 = e− 4
3 k z(ημνdxμdxν + dz2) ημν = {−1,1,1,1}

5D theory of a massless scalar :ϕ(x, z)

𝒮 = ∫ d4x ∫
πR

0
dz −g [−

1
2

gMN∂Mϕ(x, z) ∂Nϕ(x, z)]
Discretise (fifth ) -dimension of size  into a lattice of  sites with spacing 


           

z πR N + 1 a =
πR
N

ϕ(x, z) → ϕj(x)

𝒮 = −
1
2 ∫ d4x

N−1

∑
j=0 {(∂μϕj)2 +

N2

π2R2 (ϕj − e
kπR
N ϕj+1)

2

}
The derivative is now a difference

CW Lagrangian with  m2 ≡
N2

π2R2
, q ≡ e

kπR
N

Giudice, McCullough (JHEP02(2017)036) 
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z πR N + 1 a =
πR
N

ϕ(x, z) → ϕj(x)

𝒮 = −
1
2 ∫ d4x

N−1

∑
j=0 {(∂μϕj)2 +

N2

π2R2 (ϕj − e
kπR
N ϕj+1)

2

}
The derivative is now a difference

CW Lagrangian with  m2 ≡
N2

π2R2
, q ≡ e

kπR
N The metric can be obtained from a 

Linear Dilaton Theory of Gravity

Giudice, McCullough (JHEP02(2017)036) 
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5D theory of gravity with a linear dilaton generates the required geometry:

𝒮Bulk = ∫ d4x dz −g {2M3
5 ( 1

4
ℛ −

1
12

gMN∂MS∂NS − V(S))}

z = 0 z = πR

Brane 1 Brane 2

𝒮Brane = − ∫ d4x dz
−g

g55
∑

α

λα(S)δ(z − zα) α = 1,2; zα = 0, πR

: Dilaton potentials on the branesλα(S)

V(S) = − e−2S/3k2

λα(S) = e−S/3Λα,
: A bulk mass parameterk

: Brane tensionsΛα

[Antionadis et. al. PRL (2012); Cox, Gherghetta JHEP (2012)]

A fifth spatial dimension on an  orbifold, 

essentially an interval of size . 

S1/ℤ2
πR

31

ds2 = e− 4
3 k z(ημνdxμdxν + dz2)



PDG (2023)

109 GeV ≲
qN f

ξ
≲ 1011 GeVLower limit from experimental 


and astro-cosmo observations 
Upper limit from acceptable axion 


abundance in Universe 
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Benchmark III: Heavy ALPs



Can we get close to the current LHC sensitivities? 

Simplest and cleanest channel :  p p → an(+X) → γ γ

Low mass diphoton resonance search: 2211.04172

 Motivates → f ∼ 𝒪(TeV)
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Low mass  resonance search backgroundγγ
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VLQs and Heavy Scalars

mΨ =
1

2
λΨ f, mϕ = 2λf
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Linear Dilaton Gravity-Search for periodic signals 2305.10894
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