Probing neutrinophillic scalars with high-energy muon beams

Jyotismita Adhikary

National Centre for Nuclear Research(NCBJ)
Warsaw, Poland

Together with Kevin Kelly, Felix Kling and Sebastian Trojanowski

Based on e-Print: 10.1103/PhysRevD.111.075019

Scalars2025: Higgs bosons and cosmology

Outline

- 1. The model: Neutrino-phillic scalars
- 2. Dark matter models coupled to neutrino-phillic scalars
- 3. Signature of neutrinophillic scalars
- 4. The muon collider
- 5. Possible backgrounds and mitigation

Neutrino-phillic scalar mediator

• The particle φ couples to Standard Model (SM) neutrinos through a portal that involves a dimension-6 operator.

$$\mathcal{L} \supset rac{1}{2} \lambda_{lphaeta}
u_{lpha}
u_{eta} \phi + ext{h.c.}$$

K. Kelly, Y. Zhang arXiv: 1901.01259

DM candidates

$${\cal L}_{
m DF} \supset rac{1}{2} y ar{\chi}^c \chi \phi + {
m h.c.},$$

• Undergoes freeze out.

$$\mathcal{L}_{\mathrm{CS}} \supset rac{1}{6} y \chi^3 \phi + \mathrm{h.c.}.$$

- Complex scalar with lepton number $+\frac{2}{3}$.
- Undergoes freeze out.

Kevin J. Kelly, and Yue Zhang 1901.01259

$$\nu_4 = \nu_s \cos \theta + \nu_a \sin \theta$$

- Sterile neutrino couples to SM neutrinos via ϕ
- Freezes in via Dodelson- Widrow mechanism.

Scott Dodelson, Lawrence M. Widrow 9303287, Gouvêa et. al. 1910.04901

The wrong-sign muon signature

Note: One beam is enough to probe the signature

Muon collider

- This design envisions a 4.5 km long storage ring into which about 10¹³ muons will be injected each second.
- While these muons can decay anywhere in the ring, the largest flux of neutrinos originates from decays in the straight sections around the IPs.
- We conservatively assume that the straight section have a length of 10 m, resulting in about 10¹⁰ neutrinos per second.

Neutrino induced backgrounds

Neutral and charged current v_{μ} events

Neutral and charged current v_e events

Pion/Kaon decay in flight

Background mitigation

	Background Rates					Signal Efficiency for m_{ϕ}	
Cut	CC prompt	CC displaced	NC prompt	NC displaced	All	1 GeV	$20~{ m GeV}$
All Events	$1.89\cdot 10^7$		$6.24\cdot 10^6$		$2.52\cdot 10^7$	1.00	1.00
$E_{\mu^+} > 100 \text{ GeV}$	$3.23\cdot 10^4$	$4.59 \cdot 10^3$	$2.45\cdot 10^3$	$1.29\cdot 10^3$	$4.06\cdot 10^4$	0.783	0.661
$E_{\mu^-} < 30~{ m GeV}$	$2.43 \cdot 10^3$	$9.11 \cdot 10^2$	$2.30\cdot 10^3$	$1.29\cdot 10^3$	$6.93\cdot 10^3$	0.78	0.661
$E_{\mu^+} > 0.5 E_{visible}$	$2.40 \cdot 10^2$	33.77	$2.09\cdot 10^2$	$1.79\cdot 10^2$	$6.61\cdot 10^2$	0.576	0.412
charm veto	48.47	30.85	43.87	$1.78\cdot 10^2$	$3.01\cdot 10^2$	0.555	0.411
p_{T,μ^+} vs. $\Delta\phi$	1.68	0.767	2.86	4.56	9.88	0.386	0.233
BDT	0.155	0.646	0.081	1.35	2.23	0.416	0.214

Background mitigation

Sensitivity after each cut

Sensitivity reach

Sensitivity reach

Conclusions

- With this work we have tried to probe neutrinophillic mediator with high energy muon beams.
- The MuColv detector would be especially capable of searching for a neutrinophilic mediator ϕ through the mono-neutrino scattering process $\nu\mu N \to \mu + \phi X$, exceeding searches from other terrestrial approaches for m ϕ in the ~few MeV ten GeV range
- The search for mediator will also open windows to probe dark matter models that couple via the mediator to the Standard model particles.
- Neutrinos have always been a loose string in the standard model and there are plans to study neutrino physics in muon collider along with BSM physics.