

Indications for New Higgs Bosons in Associated Di-Photon Production

Sumit Banik

Scalars 2025

24rd September 2025

Hints for new Higgs Bosons

O Minimality of the scalar sector of the SM not guaranteed theoretically

o ATLAS performed Model-Independent analysis of $\gamma\gamma+X$ for SM Higgs

Full Run 2 Data

O Analysis involves 22 signal regions

Heavy Flavor	Jets	Lepton	$ E_T^{ m miss} $	Top	$\mid H_T \mid$	Photon
$\geq 3b, \geq 4b$	$\geq 4j, \geq 6j,$ etc.	$1\ell, \ 2\ell, \ge 3\ell, \ 1\tau, \ 2\tau$	$E_T^{\text{miss}} > 100 \text{ GeV},$ $E_T^{\text{miss}} > 200 \text{ GeV}$	$\ell b, t_{ m lep}, t_{ m had}$	$H_T > 500 \text{ GeV},$ $H_T > 1000 \text{ GeV}$	$m_{\gamma\gamma}^{12}, m_{\gamma\gamma}^{13}$

Hints for new Higgs Bosons

O Excesses Most Pronounced: $\gamma\gamma + \ell b$, $\gamma\gamma + \text{MET}$, $\gamma\gamma + 1\tau$, $\gamma\gamma + 4j$, $\gamma\gamma + 1\ell$

[ATLAS: CERN-EP-2022-232]

[ATLAS-CONF-2024-005]

O Possible new Higgs Boson?

Hints for new Higgs Bosons

o No Excesses at 152 GeV in SRs: $\gamma\gamma + t_{lep}$, $\gamma\gamma + 2\ell$, $\gamma\gamma + 2\tau$,

[ATLAS: CERN-EP-2022-232]

[ATLAS-CONF-2024-005]

Point towards associated H^{\pm}

Hints for new Higgs Bosons

O No excess in Inclusive Searches

Dominant Production Process

- O Hints towards DY production of new Higgs at LHC
- O Properties of H^{\pm} unknown

Model Description

O Two New Particles: H, H^{\pm}

o H produced only via DY process

O Dominant decays of H^{\pm} : $tb, \tau\nu, WZ$

- O Simulation Setup: MadGraph + Pythia + Delphes
- O Log-Likelihood Fit performed using Poisson Statistics

Charged Higgs Decay

o BR
$$(H^{\pm} \rightarrow tb \rightarrow bbW) = 100\%$$

o Dominant Effect: $\gamma\gamma + \ell b$, $\gamma\gamma + MET$, $\gamma\gamma + 1\ell$, $\gamma\gamma + t_{lep}$

O Combined significance: 3.8σ

Relevant SRs

$$----- \ge 4j ----- \ell b$$

$$------ E_{\text{miss}}^T > 100 ------ t_{\text{lep}}$$

$$------ E_{\text{miss}}^T > 200 ------ 1\tau$$

$$------- \ge 2\tau$$

$$------- \ge 2\ell ------$$
 Combined

Cross-section Normalized to a $SU(2)_L$ doublet

Charged Higgs Decay

o BR
$$(H^{\pm} \to \tau \nu) = 100 \%$$

- O Dominant Effect: $\gamma\gamma + MET$, $\gamma\gamma + 1\tau$, $\gamma\gamma + 1\ell$
- o Combined significance: 3.8σ

Charged Higgs Decay

o BR
$$(H^{\pm} \to WZ) = 100 \%$$

Dominant in Triplet Model

- O Dominant Effect: $\gamma\gamma + MET$, $\gamma\gamma + 1\ell$, $\gamma\gamma + 2\ell$, $\gamma\gamma + 2\tau$
- O Combined significance: 3.5σ

9

Model Building

Key Points

- O Small total production cross-section
- O Dominant DY production cross-section
- o Large BR $(H^{\pm} \to tb)$ and BR $(H^{\pm} \to \tau \nu)$
- o Small BR $(H^{\pm} \to WZ)$ to avoid multiple leptons
- o Sizable BR $(H \rightarrow \gamma \gamma)$

Model Description

o Scalar Particles: h, Δ^0 , Δ^{\pm}

- No Yukawa couplings
- o Physical Parameters: $m_h, m_{\Delta^0}, m_{\Delta^\pm}, v_\Delta, \alpha$
- o Theoretical constraints require $m_{\Delta^0} \approx m_{\Delta^\pm}$
- O Production channels at LHC

Suppressed by mixing

 $m_h = 125 \text{ GeV}, v_{\Delta} = 3.4 \text{ GeV}$

Model Description

O Dominant Triplet Higgses decay channels

Branching Ratio of Δ_0 (m_{Δ_0} =150 GeV)

Branching Ratio of Δ^{\pm} ($\alpha=0.1$)

Explanation of $\gamma\gamma + X$ Excesses

Model generated using SARAH

O Free Variables: m_{Δ_0} , Br $\left(\Delta_0 \to \gamma\gamma\right)$ instead of m_{Δ_0} , α

Process Simulated

(S. Ashanujjaman, SB et al.)

[2404.14492]

Explanation of $\gamma\gamma + X$ Excesses

o BR($\Delta^0 \to \gamma\gamma$) compatible with SM Higgs signal strength to $\gamma\gamma$

Model Constraints

O Mass of Δ^{\pm} constrained from stau-like searches

o $m_{\Lambda^{\pm}} < 110$ GeV excluded at 95% confidence level.

Model Constraints

O Triplet Higgs produces multiple lepton final states searched by ATLAS & CMS

O ATLAS provides upper limit on visible cross-section for 22 SRs [CMS: CERN-EP-EP-2021-063]

Model Constraints

O Within 95 % CL upper limits of ATLAS

- O Simulated $pp \to \Delta^0 \Delta^{\pm}$ and $pp \to \Delta^{\mp} \Delta^{\pm}$
- O Upper band obtained for $Br(\Delta^0 \to WW) = 100 \%$

Summary & Outlook

- 0 Model-Independent analysis by ATLAS of $\gamma\gamma+X$ in 22 SRs
- O Excesses observed in some SRs

- O Hints for associated production of Neutral Higgs Boson
- O Explanation possible in Δ SM and 2HDM

Next Talk

O All theoretical constraints and experimental constraints statisfied

Thank you for your attention!

Backup

Signal Regions Cuts

Target	Signal region	Detector level selections	Correlation
High jet activity [90]	4j	$n_{\rm jet} \ge 4, \ \eta_{\rm jet} < 2.5$	
Top [90]	ℓb $t_{ m lep}$	$n_{\ell=e,\mu} \ge 1, \ n_{b ext{-jet}} \ge 1$ $n_{\ell=e,\mu} = 1, \ n_{ ext{jet}} = n_{b ext{-jet}} = 1$	
Lepton [90, 91]	2ℓ 3ℓ	$ee, \mu\mu \text{ or } e\mu$ $n_{\ell=e,\mu} \geq 3$	$< 26\% (1\ell)$
	1ℓ	$n_{\ell=e,\mu} = 1$, $n_{\tau_{\text{had}}} = 0$, $n_{b\text{-jet}} = 0$, $E_{\text{T}}^{\text{miss}} > 35 \text{ GeV (only for } e\text{-channel)}$	$< 26\% \ (2\ell)$
Tau [91]	$1 au_{ m had}$	$n_{\ell=e,\mu} = 0, n_{\tau_{\text{had}}} = 1, n_{b\text{-jet}} = 0,$ $E_{\text{T}}^{\text{miss}} > 35 \text{ GeV}$	
$E_{\mathrm{T}}^{\mathrm{miss}}$ [90]	$E_{\rm T}^{\rm miss} > 200 \; {\rm GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}} > 100 \; \mathrm{GeV}$ $E_{\mathrm{T}}^{\mathrm{miss}} > 200 \; \mathrm{GeV}$ $E_{\mathrm{T}}^{\mathrm{miss}} > 300 \; \mathrm{GeV}$	$29\% \ (E_{\rm T}^{\rm miss} > 200 \ {\rm GeV})$ $29\% \ (E_{\rm T}^{\rm miss} > 100 \ {\rm GeV})$ -

Model Description

o Extend SM with
$$Y=0$$
, $SU(2)_L$ triplet: $\Delta=\frac{1}{2}\begin{pmatrix} v_\Delta+h_\Delta^0 & \sqrt{2}h_\Delta^+ \\ \sqrt{2}h_\Delta^- & -v_\Delta-h_\Delta^0 \end{pmatrix}$

O No direct coupling of Δ with fermions

Suppressed ggH

O Scalar potential

$$V = -\mu_{\phi}^2 \phi^{\dagger} \phi + \frac{\lambda_{\phi}}{4} (\phi^{\dagger} \phi)^2 - \mu_{\Delta}^2 \text{Tr}(\Delta^{\dagger} \Delta) + \frac{\lambda}{4} [\text{Tr}(\Delta^{\dagger} \Delta)]^2$$

$$+A\phi^{\dagger}\Delta\phi + \lambda_{\phi\Delta}\phi^{\dagger}\phi \text{Tr}(\Delta^{\dagger}\Delta)$$

where ϕ is the SM doublet.

Statistical Analysis

o For a given SR, assuming each bin i is an independent event

$$\mathcal{L}_{R} = \prod_{i} \left[\frac{\mathcal{L}(N_{i}^{\text{SM}}, N_{i}^{\text{exp}})}{\mathcal{L}(N_{i}^{\text{NP}}, N_{i}^{\text{exp}})} \right]$$

- o Combining SRs means the product of the likelihood function of all SRs.
- o Log Likelihood Ratio Test

$$\Delta \chi^2 = -2\log(\mathcal{L}_R)$$

Real Higgs Triplet

Basis Transformation

Physical to Lagrangian Basis

$$\begin{split} m_h^2 &= \frac{\lambda_\Phi v_\Phi^2}{2} + \tan \alpha \left(\lambda_{\Phi\Delta} v_\Delta - \frac{A}{2} \right) v_\Phi, \\ m_{\Delta^0}^2 &= \frac{\lambda_\Delta v_\Delta^2}{2} + \frac{A v_\Phi^2}{4 v_\Delta} - \tan \alpha \left(\lambda_{\Phi\Delta} v_\Delta - \frac{A}{2} \right) v_\Phi, \\ m_{\Delta^\pm}^2 &= A \frac{v_\Phi^2 + 4 v_\Delta^2}{4 v_\Delta}, \end{split}$$

Lagrangian to Physical Basis

$$\lambda_{\Phi} = \frac{2m_h^2}{v^2},$$

$$\lambda_{\Delta} = \frac{2}{v_{\Delta}^2} \left[m_{\Delta^0}^2 - m_{\Delta^{\pm}}^2 \right],$$

$$\lambda_{\Phi\Delta} = \frac{\alpha}{vv_{\Delta}} \left(m_{\Delta^0}^2 - m_{\Delta^{\pm}}^2 \right) + \frac{2}{v^2} m_{\Delta^{\pm}}^2,$$

$$A = \frac{4v_{\Delta}}{v^2} m_{\Delta^{\pm}}^2.$$

Real Higgs Triplet

 $Z\gamma$

Real Higgs Triplet Zy

Real Higgs Triplet Prospects FCC-ee

- Only Z^*/γ^* s-channel
- Suppressed $\Delta^0 \Delta^0$ production for a real triplet
- Pair production of the charged components

Real Higgs Triplet Prospects

FCC-ee

• The decay $\Delta^{\pm} \to W^{\pm}Z$ leads to a 6ℓ (+ MET) signature

Events expected in the ΔSM model

$$e^+e^- \rightarrow \Delta^{\pm} \Delta^{\mp} \rightarrow 6\ell + MET \approx 46$$

Events expected in the SM model

$$e^+e^- \rightarrow 6\ell(+\text{MET}) \approx 1$$

- Log-Likely-hood ratio yields $\chi^2 \approx 80$
- $\sigma(e^+e^- \to \Delta^{\pm} \Delta^{\mp})$ could be measured at $\approx 9\sigma$

Type-I

o Combined decay modes: $H^{\pm} \rightarrow tb$, $H^{\pm} \rightarrow \tau \nu$

 $H^{\pm}
ightarrow W^{\pm}Z$ suppressed in 2HDM

o $-\Delta\chi^2$ increases with m_{H^\pm} due to enhanced $\gamma\gamma + lb$ vs $\gamma\gamma + t_{\rm lep}$

 $H^{\pm} \rightarrow cs$ has small impact

o BR $(H \to \gamma \gamma)$ increases with $m_{H^{\pm}}$

Explanation of $\gamma\gamma + X$ Excesses

O Bounds on $tan(\beta)$

FCNC & CP-Violation

- O General 2HDM may lead to FCNC at tree-level
- O Avoided in flavour aligned 2HDM

$$Y = -\bar{Q}_L Y_d (\phi_2 + \zeta_d \phi_1) d_R - \bar{Q}_L Y_u (\phi_2^c + \zeta_u^* \phi_1^c) u_R - \bar{L}_L Y_l (\phi_2 + \zeta_l \phi_1) e_R$$

O Complex parameters leads to CP-violation

Yukawa Sector: $\zeta_u, \zeta_d, \zeta_l$ Higgs Sector: $\lambda_5, \lambda_6, \lambda_7$ We take them

real

EDM Constraints

- o $Im(\lambda_6)$ drives $Br(A \rightarrow \gamma\gamma)$
- O Correlate with EDM constraints

O Transform Lagrangian to Higgs Basis

$$m_{11}^2, m_{22}^2, m_{12}^2$$

$$\lambda_1, \dots, \lambda_7$$

$$\langle \phi_1 \rangle = v_1, \langle \phi_2 \rangle = v_2$$

$$Y_1, Y_2, Y_3$$

$$Z_1, \dots, Z_7$$

$$\langle \phi_1 \rangle = v, \langle \phi_2 \rangle = 0$$

O Used analytic expressions of [arXiv: 2009.01258]

EDM Constraints

- O eEDM gives stringent bounds: $10^{-30}e\ cm^{-1}$ [arXiv:2212.11841]
- O Projection for nEDM and pEDM considered

nEDM
$$\leq 10^{-28} e \ cm^{-1}$$
; pEDM $\leq 10^{-29} e \ cm^{-1}$ [EPJ Web Conf. 262 (2022) 01015] [arXiv:2007.10332]

O Benchmark Point:

$$\begin{split} m_H &= 200 \text{ GeV}, m_{H^\pm} = 130 \text{ GeV}, m_A = 152 \text{ GeV} \\ Z_2 &= -Z_3 = 0.2, \text{Re}(Z_7) = 0.1, \theta_{12} = 0.001 \\ \theta_{13} &= \theta_{23} = 0.01, \zeta_l = \zeta_u = \zeta_d = \zeta_f \end{split}$$

o nEDM is expressed as

$$\begin{split} d_n &= - \ (0.20 \pm 0.01) d_u + (0.78 \pm 0.03) d_d - (0.55 \pm 0.28) e \tilde{d}_u \\ &- (1.1 \pm 0.55) e \tilde{d}_d + (50 \pm 40) \ \text{MeV} \ e \tilde{d}_G \end{split}$$

- O d_q is the quark EDM and \tilde{d}_q is the chromo EDM
- \circ d_G contribution from Weinberg operator

General 2HDM

Large $H \rightarrow \gamma \gamma$

O Large $Br(H \to \gamma \gamma)$ possible in general 2HDM

$$\mathcal{L} \in -\lambda_6 H_1^{\dagger} H_1 H_2^{\dagger} H_1 + \text{h.c.},.$$

O Modifies the $HH^{\pm}H^{\mp}$ vertex

o Enhanced $\operatorname{Br}(H \to \gamma \gamma)$ via H^{\pm} loop

Deviations in $t\bar{t}$ Differential cross-section

No match with SM

[ATLAS: CERN-EP-2023-016]

The precision of the measurements is typically 2% for the absolute differential cross-sections and at the 1% level for the normalised differential cross-sections, except in the highest energy bins where the $t\bar{t}/Wt$ interference uncertainty contribution increases. The measurements are compared with a wide range of models for $t\bar{t}$ production in pp collisions. No model can describe all measured distributions within their

Mismodelling of SM or NP effects?

Deviations in $t\bar{t}$ Differential cross-section

NP Results

- O Simplified model with three Higgs bosons
- ^O Preferred over SM by atleast 5.8 σ
- O Compatible with 95 GeV and 152 GeV Excesses

(SB, A. Crivellin et al.) [2308.07953]