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I. MOTIVATION
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I. Motivation: NANOGrav

Credits: NANOGrav

https://doi.org/10.3847/2041-8213/acdac6
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I. Motivation: NANOGrav
One possible solution: Supercooled PT
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https://doi.org/10.3847/2041-8213/acdc91



I. Motivation: Rich Dark Sectors
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I. Motivation: Rich Dark Sectors
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I. Motivation: Rich Dark Sectors
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λHΦ|H|²|Φ|²

effectively



GOAL
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Explain NANOGrav data with the help of a minimal 
realization of the Dark Sector model.

BSM 
ingredients:
Φ (φ and χ)

Z’

Thermalization 
with SM:
λHΦ > 10⁻⁷
ε > 10⁻⁹

[2104.03342, 0811.0326]

Consider 
supercooled 

PTs subtleties

BSM - 
independence:

small λHΦ, ε
(λHΦ vΦ / vH)² small



II. POTENTIAL
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II. Potential
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Tree level

Coleman - 
Weinberg

1-loop T - 
dependent

Daisy 
resummation



II. Potential: On-shell renormalization scheme
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ON-SHELL

Contribution of the Goldstone, χ

[JHEP 04 (2008), p. 029]



II. Potential (BP1 and BP4)
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II. Potential: flat V(T=0)
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III. GW parameters: 
Supercooled PTs subtleties
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III. GW parameters: Reference temperature, T*
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When there is supercooling, the computation of 
the nucleation temperature is not enough:

TN ≠ Tp



III. GW parameters: Reference temperature, T*
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Volume at Tp of a bubble 
nucleated at T



III. GW parameters: Reference temperature, T*
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Full general relation 
between t and T: J(T) ≠ T



III. GW parameters: Reference temperature, T*
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We include the vacuum energy 
released in the transition and 
(SM + BSM) dof



III. GW parameters: Reference temperature, T*
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The decay rate is computed from the Euclidean 
action, S3, of the O(3)-symmetric tunneling solutions

We compute using the 
tunneling potential method 
(1805.03680, 1811.09185): 
much faster than the bounce 
action method



III. GW parameters: other conditions for PT
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1. False vacuum volume 
must decrease 
[2212.07559]

2. Transition must complete



III. GW parameters: temperatures
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III. GW parameters: relevant quantities

23

1. Mean bubble separation

2. Strength of transition
[2305.02357, 2004.06995]

(pseudotrace)

(speed of sound)

3. Bubble wall velocity: 
relativistic [2112.07686]: 
α > α∞

4. Reheating T (fast decay of 
φ) [1809.08242]



IV. MODELING THE SPECTRUM
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IV. Modeling the spectrum: SW
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γeq: terminal Lorentz factor of wall
γ*: Lorentz factor of wall without 

NLO pressure term

γ*>γeq: leftover energy goes to plasma



IV. Modeling the spectrum: SW
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length of the sound 
wave period
Uf : root - mean - 
square fluid velocity
[1809.08242]



IV. Modeling the spectrum: SW
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efficiency coefficient for sound waves 
[1512.06239, 1004.4187], where:

αeff ≡α(1 - κcol)



IV. Modeling the spectrum: SW
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peak frequency



IV. Modeling the spectrum: SW
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redshift: s(t) a³(t) conserved



V. BENCHMARK POINTS 
AND RESULTS
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The dark minimal 
model could in 
principle explain 
NANOGrav data

hierarchy of masses



Summary

33

● NANOGrav data (NG15) points to a Gravitational Wave Background that 
might be explained by BSM scenarios, such as Supercooled First Order 
Phase Transitions of a dark scalar in the MeV - GeV energy range.

● Although fine-tuned, a minimal dark sector, consisting of a complex 
scalar singlet and a U(1) dark gauge may explain NG15.

● The supercooled nature of the FOPT requires a careful treatment, in order 
to avoid approximations that rely on assumptions that may not hold in a 
supercooled scenario (such a as the Bag model).

● The region that better explains NG15 data gets close to the conformal 
field scenario, with a hierarchy of mases: mZ’ > mφ.

● NG15 constitutes another door opened to search for Rich Dark Sectors, 
that go beyond a minimal model, such as the one presented here.

● We need to move to MS-bar to explore the whole region and consider the 
running of the parameters of the model.



Extra slides
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for questions



Where does the energy go?
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Pressure driving expansion of wall

γ for which equilibrium is reached

α for which there is no pressure before γ grows

γ reached by neglecting NLO

κcoll
energy 
to wall



Other sources of GWs
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Credits: NICOLLE R. 
FULLER/SCIENCE PHOTO 

LIBRARY



Decay of φ 
to μ⁺μ⁻ 
(mφ > 2mμ)
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The decay to e⁺e⁻ is 
not fast enough: 
we’d need dark 
fermions. To be 
discussed in the 
future.


