

Bubble wall dynamics from non-equilibrium QFT

Based on 2504.13725

with W.Ai, B.Garbrecht, C.Tamarit, M.Vanvlasselaer

Matthias Carosi

Theoretical Physics of the Early Universe TUM School of Natural Sciences Technical University of Munich

Gravitational Waves as Probes of Physics Beyond the Standard Model

26/06/2025

Tur Uhrenturm

- The dynamics of a single bubble
 - Driving pressure vs. friction
 - Sources of friction
 - Kinetic vs. kick pictures
- 2 The language of non-equilibrium QFT: CTP and 2PI
- **B** Example: friction from pair production
- Conclusions and outlook

When the two pressures balance

 $\mathcal{P}_{\rm friction} = \mathcal{P}_{\rm driving}$

the system reaches a steady state

 \implies terminal wall velocity

 $\equiv v_w$

When the two pressures balance

 $\mathcal{P}_{\rm friction} = \mathcal{P}_{\rm driving}$

the system reaches a steady state

 \Longrightarrow terminal wall velocity

 $\equiv v_w$

Goal: identify v_w from the steady state condition.

Mass gain

Two main approaches exist for studying the dynamics of a single bubble

Two main approaches exist for studying the dynamics of a single bubble

Kinetic picture

[Moore and Propokopec '95]

Set of dynamical equations

$$\begin{cases} \Box \varphi + V'(\varphi) + \sum_{i} \frac{\mathrm{d}m_{i}^{2}}{\mathrm{d}\varphi} \int_{\mathbf{p}} f_{i}(\mathbf{p}, x) = 0\\ \frac{\mathrm{d}f_{i}}{\mathrm{d}t} = -\mathcal{C}[f] \end{cases}$$

Two main approaches exist for studying the dynamics of a single bubble

Kinetic picture [Moore and Propokopec '95]

Set of dynamical equations

$$\begin{cases} \Box \varphi + V'(\varphi) + \sum_{i} \frac{\mathrm{d}m_{i}^{2}}{\mathrm{d}\varphi} \int_{\mathbf{p}} f_{i}(\mathbf{p}, x) = 0\\ \frac{\mathrm{d}f_{i}}{\mathrm{d}t} = -\mathcal{C}[f] \end{cases}$$

Pressure from the flux of particles

$$\mathcal{P}_{\text{kick}} = \sum_{i,X} \int_{\mathbf{p}} 2p^z \, \mathrm{d}\mathbb{P}_{i \to X}(\mathbf{p}) \, f_i(\mathbf{p}) \, \Delta p_{i \to X}^z$$

Kick picture

[Dine et al. '92, Bodeker and Moore '09, '17]

Two main approaches exist for studying the dynamics of a single bubble

Kinetic picture [Moore and Propokopec '95]

Set of dynamical equations

$$\begin{cases} \Box \varphi + V'(\varphi) + \sum_{i} \frac{\mathrm{d}m_{i}^{2}}{\mathrm{d}\varphi} \int_{\mathbf{p}} f_{i}(\mathbf{p}, x) = 0\\ \frac{\mathrm{d}f_{i}}{\mathrm{d}t} = -\mathcal{C}[f] \end{cases}$$

- includes fluidodynamics effects
- misses higher order scattering effects, e.g. pair production

Pressure from the flux of particles

$$\mathcal{P}_{\text{kick}} = \sum_{i,X} \int_{\mathbf{p}} 2p^z \, \mathrm{d}\mathbb{P}_{i \to X}(\mathbf{p}) \, f_i(\mathbf{p}) \, \Delta p_{i \to X}^z$$

Kick picture

[Dine et al. '92, Bodeker and Moore '09, '17]

Two main approaches exist for studying the dynamics of a single bubble

Kinetic picture [Moore and Propokopec '95]

Set of dynamical equations

$$\begin{cases} \Box \varphi + V'(\varphi) + \sum_{i} \frac{\mathrm{d}m_{i}^{2}}{\mathrm{d}\varphi} \int_{\mathbf{p}} f_{i}(\mathbf{p}, x) = 0\\ \frac{\mathrm{d}f_{i}}{\mathrm{d}t} = -\mathcal{C}[f] \end{cases}$$

- includes fluidodynamics effects
- × misses higher order scattering effects, *e.g.* pair production

Kick picture [Dine et al. '92, Bodeker and Moore '09, '17]

Pressure from the flux of particles

$$\mathcal{P}_{\text{kick}} = \sum_{i,X} \int_{\mathbf{p}} 2p^z \, \mathrm{d}\mathbb{P}_{i \to X}(\mathbf{p}) \, f_i(\mathbf{p}) \, \Delta p_{i \to X}^z$$

- includes all scattering processes
- needs a quasi-particle interpretation, *i.e.* only valid for fast walls

Matthias Carosi | Bubble wall dynamics from non-equilibrium QFT | 26/06/2025

Current status

Two main approaches exist for studying the dynamics of a single bubble

Kinetic picture [Moore and Propokopec '95]

Set of dynamical equations

$$\begin{cases} \Box \varphi + V'(\varphi) + \sum_{i} \frac{\mathrm{d}m_{i}^{2}}{\mathrm{d}\varphi} \int_{\mathbf{p}} f_{i}(\mathbf{p}, x) = 0\\ \frac{\mathrm{d}f_{i}}{\mathrm{d}t} = -\mathcal{C}[f] \end{cases}$$

- includes fluidodynamics effects
- × misses higher order scattering effects, *e.g.* pair production

Kick picture

[Dine et al. '92, Bodeker and Moore '09, '17]

Pressure from the flux of particles

$$\mathcal{P}_{\text{kick}} = \sum_{i,X} \int_{\mathbf{p}} 2p^z \, \mathrm{d}\mathbb{P}_{i \to X}(\mathbf{p}) \, f_i(\mathbf{p}) \, \Delta p_{i \to X}^z$$

- includes all scattering processes
- needs a quasi-particle interpretation, *i.e.* only valid for fast walls

Goal: extend the kinetic picture to capture all the microphysics

The dynamics of a single bubble

2 The language of non-equilibrium QFT: CTP and 2PI

- Brief review of the CTP formalism
- Introducing the 2PI effective action
- The full dynamical equations
- Identifying sources of friction
- Example: friction from pair production
- 4 Conclusions and outlook

The tools of non-equilibrium QFT

real time correlators \implies CTP formalism

dynamical equations \implies 2PI effective action

The path integral formulation of quantum field theory is built to study transition rates. This we call the *in-out formalism*

The path integral formulation of quantum field theory is built to study transition rates. This we call the *in-out formalism*

The path integral formulation of quantum field theory is built to study transition rates. This we call the *in-out formalism*

Using it, we compute transition amplitudes between asymptotic states

$$\mathcal{A} = \left\langle \Psi_{\mathrm{OUT}} \right| \mathcal{O}(\hat{\phi}) \left| \Psi_{\mathrm{IN}}
ight
angle = \left. \mathcal{N} \int \left[\mathcal{D} \phi
ight] \Psi_{\mathrm{OUT}}^*(\phi) \mathcal{O}(\phi) \Psi_{\mathrm{IN}}(\phi) e^{i S[\phi]}$$

The path integral formulation of quantum field theory is built to study transition rates. This we call the *in-out formalism*

Using it, we compute transition amplitudes between asymptotic states

$$\mathcal{A} = \left\langle \Psi_{\mathrm{OUT}} \right| \mathcal{O}(\hat{\phi}) \left| \Psi_{\mathrm{IN}}
ight
angle = \left. \mathcal{N} \int \left[\mathcal{D} \phi
ight] \Psi_{\mathrm{OUT}}^*(\phi) \mathcal{O}(\phi) \Psi_{\mathrm{IN}}(\phi) e^{i S[\phi]}$$

But how can we compute time (and space) dependent correlators?

Setting: we know the state at some initial time t_i and want to know how it will be at time t_f .

Setting: we know the state at some initial time t_i and want to know how it will be at time t_f . Idea: fold the time contour onto itself, namely introduce a *closed time path* (CTP)

Setting: we know the state at some initial time t_i and want to know how it will be at time t_f . Idea: fold the time contour onto itself, namely introduce a *closed time path* (CTP)

Setting: we know the state at some initial time t_i and want to know how it will be at time t_f . Idea: fold the time contour onto itself, namely introduce a *closed time path* (CTP)

Setting: we know the state at some initial time t_i and want to know how it will be at time t_f . Idea: fold the time contour onto itself, namely introduce a *closed time path* (CTP)

We introduce the label \pm for the time branch, double our degrees of freedom, and can now use all the tools from the path integral formalism.

The tools of non-equilibrium QFT

real time correlators \implies CTP formalism

dynamical equations \implies 2PI effective action

We introduce the generator of connected one-

point functions

$$e^{W[J]} = Z[J] = \int [\mathcal{D}\phi] e^{iS[\phi] + \int_x J(x)\phi(x)}$$

We introduce the generator of connected one- point functions

$$e^{W[J]} = Z[J] = \int [\mathcal{D}\phi] e^{iS[\phi] + \int_x J(x)\phi(x)}$$

and define the one-particle-irreducible (1PI) effective action

$$\Gamma_{1\mathrm{PI}}[\varphi \quad] = \max_{J} - W[J \quad] + \int_{x} J(x)\varphi(x)$$

We introduce the generator of connected one- and two-point functions

$$e^{W[J,R]} = Z[J,R] = \int [\mathcal{D}\phi] e^{iS[\phi] + \int_x J(x)\phi(x) + \frac{1}{2}\int_{x,y} \phi(x)R(x,y)\phi(y)}$$

and define the one-particle-irreducible (1PI) effective action

$$\Gamma_{1\mathrm{PI}}[\varphi \quad] = \max_{J} - W[J \quad] + \int_{x} J(x)\varphi(x)$$

We introduce the generator of connected one- and two-point functions

$$e^{W[J,R]} = Z[J,R] = \int [\mathcal{D}\phi] e^{iS[\phi] + \int_x J(x)\phi(x) + \frac{1}{2}\int_{x,y} \phi(x)R(x,y)\phi(y)}$$

and define the two-particle-irreducible (2PI) effective action

$$\Gamma_{2\mathrm{PI}}[\varphi, \Delta] = \max_{J,R} - W[J,R] + \int_x J(x)\varphi(x) + \frac{1}{2}\int_{x,y} \Delta(x,y)R(x,y)$$

We introduce the generator of connected one- and two-point functions

$$e^{W[J,R]} = Z[J,R] = \int [\mathcal{D}\phi] e^{iS[\phi] + \int_x J(x)\phi(x) + \frac{1}{2}\int_{x,y} \phi(x)R(x,y)\phi(y)}$$

and define the two-particle-irreducible (2PI) effective action

$$\Gamma_{2\mathrm{PI}}[\varphi, \Delta] = \max_{J,R} - W[J,R] + \int_x J(x)\varphi(x) + \frac{1}{2}\int_{x,y} \Delta(x,y)R(x,y)$$

Equations for the one- and two-point functions are then easily generated

$$\frac{\delta\Gamma_{\rm 2PI}}{\delta\varphi(x)} = 0 \qquad \qquad \frac{\delta\Gamma_{\rm 2PI}}{\delta\Delta(x,y)} = 0$$

The tools of non-equilibrium QFT

Perturbative expansion

2PI effective action + CTP formalism \implies out-of-equilibrium dynamical equations

2PI effective action + CTP formalism \implies out-of-equilibrium dynamical equations

Doing a loop expansion of the effective action

$$\Gamma_{2\mathrm{PI}}[\varphi^a, \Delta^{ab}] = S[\varphi^+] - S[\varphi^-] + \frac{i}{2}\operatorname{Tr}\log\Delta^{-1} + \frac{i}{2}\operatorname{Tr}G_{\varphi}^{-1}\Delta + \Gamma_2[\varphi^a, \Delta^{ab}]$$

and the trace runs over the CTP indices as well.

2PI effective action + CTP formalism \implies out-of-equilibrium dynamical equations

Doing a loop expansion of the effective action

$$\Gamma_{2\mathrm{PI}}[\varphi^{a}, \Delta^{ab}] = S[\varphi^{+}] - S[\varphi^{-}] + \frac{i}{2}\operatorname{Tr}\log\Delta^{-1} + \frac{i}{2}\operatorname{Tr}G_{\varphi}^{-1}\Delta + \Gamma_{2}[\varphi^{a}\Delta^{ab}]$$
and the trace runs over the CTP indices as well.

2PI effective action + CTP formalism \implies out-of-equilibrium dynamical equations

Doing a loop expansion of the effective action

$$\Gamma_{2\mathrm{PI}}[\varphi^a, \Delta^{ab}] = S[\varphi^+] - S[\varphi^-] + \frac{i}{2}\operatorname{Tr}\log\Delta^{-1} + \frac{i}{2}\operatorname{Tr}G_{\varphi}^{-1}\Delta + \Gamma_2[\varphi^a, \Delta^{ab}]$$

and the trace runs over the CTP indices as well. The inverse tree-level propagator reads

$$G_{\varphi}^{ab,-1}(x,y) = i\delta^{(4)}(x-y)a\delta^{ab}\left(\Box + V''(\varphi^a)\right)$$

2PI effective action + CTP formalism \implies out-of-equilibrium dynamical equations Doing a loop expansion of the effective action

$$\Gamma_{2\mathrm{PI}}[\varphi^a, \Delta^{ab}] = S[\varphi^+] - S[\varphi^-] + \frac{i}{2}\operatorname{Tr}\log\Delta^{-1} + \frac{i}{2}\operatorname{Tr}G_{\varphi}^{-1}\Delta + \Gamma_2[\varphi^a, \Delta^{ab}]$$

and the trace runs over the CTP indices as well. The inverse tree-level propagator reads

$$G^{ab,-1}_{\varphi}(x,y) = i\delta^{(4)}(x-y)a\delta^{ab}\left(\Box + V''(\varphi^a)\right)$$

All terms of loop order larger than two are inside Γ_2

 $\Gamma_2 \supset$ two-particle-irreducible vacuum diagrams with two or more loops

The equations of motion are now readily obtained

The equations of motion are now readily obtained

$$\frac{\delta\Gamma_{2\mathrm{PI}}}{\delta\varphi^{+}(x)}\Big|_{\varphi^{+}=\varphi^{-}=\varphi} = \frac{\delta S}{\delta\varphi(x)} - \frac{1}{2}\frac{\mathrm{d}m_{\varphi}^{2}}{\mathrm{d}\varphi(x)}\Delta^{T}(x,x) + \frac{\delta\Gamma_{2}}{\delta\varphi(x)} = 0$$

The equations of motion are now readily obtained

$$\frac{\delta\Gamma_{2\mathrm{PI}}}{\delta\varphi^{+}(x)}\Big|_{\varphi^{+}=\varphi^{-}=\varphi} = \frac{\delta S}{\delta\varphi(x)} - \frac{1}{2}\frac{\mathrm{d}m_{\varphi}^{2}}{\mathrm{d}\varphi(x)}\Delta^{T}(x,x) + \frac{\delta\Gamma_{2}}{\delta\varphi(x)} = 0$$
$$\frac{\delta\Gamma_{2\mathrm{PI}}}{\delta\Delta^{ab}(x,y)} = 0 \quad \Rightarrow \quad \Delta^{ab,-1}(x,y) - G_{\varphi}^{ab,-1}(x,y) + 2i\frac{\delta\Gamma_{2}}{\delta\Delta^{ab}(x,y)} = 0$$

The equations of motion are now readily obtained

$$\frac{\delta\Gamma_{2\mathrm{PI}}}{\delta\varphi^{+}(x)}\Big|_{\varphi^{+}=\varphi^{-}=\varphi} = \frac{\delta S}{\delta\varphi(x)} - \frac{1}{2}\frac{\mathrm{d}m_{\varphi}^{2}}{\mathrm{d}\varphi(x)}\Delta^{T}(x,x) + \frac{\delta\Gamma_{2}}{\delta\varphi(x)} = 0$$

$$\frac{\delta\Gamma_{2\mathrm{PI}}}{\delta\Delta^{ab}(x,y)} = 0 \quad \Rightarrow \quad \Delta^{ab,-1}(x,y) - G_{\varphi}^{ab,-1}(x,y) + 2i\frac{\delta\Gamma_{2}}{\delta\Delta^{ab}(x,y)} = 0$$

For a scalar theory with quartic self-interaction, we have

$$\mathcal{L}_{int} = -\frac{\lambda}{4!}\phi^4 \longrightarrow i\Gamma_2 = \bigcirc + \bigotimes + \ldots$$

The equations of motion are now readily obtained

$$\frac{\delta\Gamma_{2\mathrm{PI}}}{\delta\varphi^{+}(x)}\Big|_{\varphi^{+}=\varphi^{-}=\varphi} = \frac{\delta S}{\delta\varphi(x)} - \frac{1}{2}\frac{\mathrm{d}m_{\varphi}^{2}}{\mathrm{d}\varphi(x)}\Delta^{T}(x,x) + \frac{\delta\Gamma_{2}}{\delta\varphi(x)} = 0$$

$$\frac{\delta\Gamma_{2\mathrm{PI}}}{\delta\Delta^{ab}(x,y)} = 0 \quad \Rightarrow \quad \Delta^{ab,-1}(x,y) - G_{\varphi}^{ab,-1}(x,y) + 2i\frac{\delta\Gamma_{2}}{\delta\Delta^{ab}(x,y)} = 0$$

For a scalar theory with quartic self-interaction, we have

Having solved for the two-point function in Wigner space at leading order in the gradients, we have the EoM for the bubble wall

$$\Box\varphi(x) + V_0'(\varphi(x)) + \frac{1}{2} \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(x)} \int \frac{\mathrm{d}^4k}{(2\pi)^4} \overline{\Delta}^T(k,x) + \int \mathrm{d}^4y \,\Pi^R(x,y)\varphi(y) = 0$$

Having solved for the two-point function in Wigner space at leading order in the gradients, we have the EoM for the bubble wall

$$\Box\varphi(x) + V_0'(\varphi(x)) + \frac{1}{2}\frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(x)} \int \frac{\mathrm{d}^4k}{(2\pi)^4} \overline{\Delta}^T(k,x) + \int \mathrm{d}^4y \,\Pi^R(x,y)\varphi(y) = 0$$

One-loop term

$$\frac{1}{2}\frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(x)}\int\frac{\mathrm{d}^4k}{(2\pi)^4}\overline{\Delta}^T(k,x) = \frac{\lambda}{2}\varphi(x)\int\frac{\mathrm{d}^4k}{(2\pi)^4}\frac{i}{k^2-m^2+i\epsilon} + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(x)}\int\frac{\mathrm{d}^3\mathbf{k}}{(2\pi)^32E_{\mathbf{k}}}f(\mathbf{k},x)$$

Having solved for the two-point function in Wigner space at leading order in the gradients, we have the EoM for the bubble wall

$$\Box\varphi(x) + V_0'(\varphi(x)) + \frac{1}{2}\frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(x)} \int \frac{\mathrm{d}^4k}{(2\pi)^4}\overline{\Delta}^T(k,x) + \int \mathrm{d}^4y \,\Pi^R(x,y)\varphi(y) = 0$$

One-loop term

$$\frac{1}{2}\frac{\mathrm{d}m_{\varphi}^{2}}{\mathrm{d}\varphi(x)}\int\frac{\mathrm{d}^{4}k}{(2\pi)^{4}}\overline{\Delta}^{T}(k,x) = \underbrace{\frac{\lambda}{2}\varphi(x)\int\frac{\mathrm{d}^{4}k}{(2\pi)^{4}}\frac{i}{k^{2}-m^{2}+i\epsilon}}_{\mathbf{T}=\mathbf{0}\text{ correction to }V_{0}} + \frac{\mathrm{d}m_{\varphi}^{2}}{\mathrm{d}\varphi(x)}\int\frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}2E_{\mathbf{k}}}f(\mathbf{k},x)$$

Having solved for the two-point function in Wigner space at leading order in the gradients, we have the EoM for the bubble wall

$$\Box\varphi(x) + V_0'(\varphi(x)) + \frac{1}{2}\frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(x)} \int \frac{\mathrm{d}^4k}{(2\pi)^4} \overline{\Delta}^T(k,x) + \int \mathrm{d}^4y \,\Pi^R(x,y)\varphi(y) = 0$$

One-loop term

$$\frac{1}{2}\frac{\mathrm{d}m_{\varphi}^{2}}{\mathrm{d}\varphi(x)}\int\frac{\mathrm{d}^{4}k}{(2\pi)^{4}}\overline{\Delta}^{T}(k,x) = \underbrace{\frac{\lambda}{2}\varphi(x)\int\frac{\mathrm{d}^{4}k}{(2\pi)^{4}}\frac{i}{k^{2}-m^{2}+i\epsilon}}_{\mathsf{T=0 \ correction \ to \ }V_{0}} + \underbrace{\frac{\mathrm{d}m_{\varphi}^{2}}{\mathrm{d}\varphi(x)}\int\frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}2E_{\mathbf{k}}}f(\mathbf{k},x)}_{f=f_{\mathrm{eq}}+\delta f=\mathrm{thermal \ corr. + off-eq.}}$$

Having solved for the two-point function in Wigner space at leading order in the gradients, we have the EoM for the bubble wall

$$\Box\varphi(x) + V_0'(\varphi(x)) + \frac{1}{2}\frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(x)} \int \frac{\mathrm{d}^4k}{(2\pi)^4} \overline{\Delta}^T(k,x) + \int \mathrm{d}^4y \,\Pi^R(x,y)\varphi(y) = 0$$

One-loop term

$$\frac{1}{2}\frac{\mathrm{d}m_{\varphi}^{2}}{\mathrm{d}\varphi(x)}\int\frac{\mathrm{d}^{4}k}{(2\pi)^{4}}\overline{\Delta}^{T}(k,x) = \frac{\lambda}{2}\varphi(x)\int\frac{\mathrm{d}^{4}k}{(2\pi)^{4}}\frac{i}{k^{2}-m^{2}+i\epsilon} + \frac{\mathrm{d}m_{\varphi}^{2}}{\mathrm{d}\varphi(x)}\int\frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}2E_{\mathbf{k}}}f(\mathbf{k},x)$$

Two-loop term

$$\Pi^{R}(x,y) = -\frac{i\lambda^{2}}{3!} \left[(\Delta^{T}(x,x'))^{3} - (\Delta^{<}(x,x'))^{3} \right]$$

Having solved for the two-point function in Wigner space at leading order in the gradients, we have the EoM for the bubble wall

$$\Box\varphi(x) + V_0'(\varphi(x)) + \frac{1}{2}\frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(x)} \int \frac{\mathrm{d}^4k}{(2\pi)^4} \overline{\Delta}^T(k,x) + \int \mathrm{d}^4y \,\Pi^R(x,y)\varphi(y) = 0$$

One-loop term

$$\frac{1}{2}\frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(x)}\int\frac{\mathrm{d}^4k}{(2\pi)^4}\overline{\Delta}^T(k,x) = \frac{\lambda}{2}\varphi(x)\int\frac{\mathrm{d}^4k}{(2\pi)^4}\frac{i}{k^2-m^2+i\epsilon} + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(x)}\int\frac{\mathrm{d}^3\mathbf{k}}{(2\pi)^32E_{\mathbf{k}}}f(\mathbf{k},x)$$

Two-loop term

$$\Pi^{R}(x,y) = -\frac{i\lambda^{2}}{3!} \left[(\Delta^{T}(x,x'))^{3} - (\Delta^{<}(x,x'))^{3} \right] = \begin{array}{c} x \\ + \end{array} \\ \left(\Delta^{T}(x,x') \right)^{3} - (\Delta^{<}(x,x'))^{3} \\ + \end{array} \\ \left(\Delta^{T}(x,x') \right)^{3} - (\Delta^{<}(x,x'))^{3} \\ + \cdots \\ \left(\Delta^{T}(x,x') \right)^{3} - (\Delta^{<}(x,x'))^{3} \\ + \cdots \\ \left(\Delta^{T}(x,x') \right)^{3} - (\Delta^{<}(x,x'))^{3} \\ + \cdots \\ \left(\Delta^{T}(x,x') \right)^{3} - (\Delta^{<}(x,x'))^{3} \\ + \cdots \\ \left(\Delta^{T}(x,x') \right)^{3} \\ +$$

$$\frac{\mathrm{d}^2}{\mathrm{d}z^2}\varphi(z) + V'_{\mathrm{eff}}(\varphi(z),T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k},z) + \int \mathrm{d}z' \,\pi^R(z,z')\varphi(z') = 0$$

$$\int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \varphi(z) \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} \varphi(z) + V_{\mathrm{eff}}'(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right) = 0$$

$$\int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \varphi(z) \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} \varphi(z) + V_{\mathrm{eff}}'(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right) = 0$$

$$\Rightarrow \int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \left[\frac{1}{2} \left(\frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \right)^2 + V_{\mathrm{eff}}(\varphi(z), T) \right] = \int_{-\delta}^{\delta} \mathrm{d}z \left[\frac{\partial V_{\mathrm{eff}}}{\partial T} \frac{\mathrm{d}T}{\mathrm{d}z} - \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}z} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) - \frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) \right]$$

In the planar wall limit $\varphi(x) = \varphi(z)$, with the wall centered at z = 0 in the wall frame

$$\int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \varphi(z) \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} \varphi(z) + V_{\mathrm{eff}}'(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right) = 0$$

$$\Rightarrow \int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \left[\frac{1}{2} \left(\frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \right)^2 + V_{\mathrm{eff}}(\varphi(z), T) \right] = \int_{-\delta}^{\delta} \mathrm{d}z \left[\frac{\partial V_{\mathrm{eff}}}{\partial T} \frac{\mathrm{d}T}{\mathrm{d}z} - \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}z} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) - \frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right]$$

$$\int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \varphi(z) \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} \varphi(z) + V_{\mathrm{eff}}'(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right) = 0$$

$$\Rightarrow \underbrace{\int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \left[\frac{1}{2} \left(\frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \right)^2 + V_{\mathrm{eff}}(\varphi(z), T) \right]}_{\Delta V_{\mathrm{eff}} \equiv \mathcal{P}_{\mathrm{driving}}} = \int_{-\delta}^{\delta} \mathrm{d}z \left[\frac{\partial V_{\mathrm{eff}}}{\partial T} \frac{\mathrm{d}T}{\mathrm{d}z} - \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}z} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) - \frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \int \mathrm{d}z' \, \pi^R(z, z')\varphi(z') \right]}$$

$$\int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \varphi(z) \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} \varphi(z) + V_{\mathrm{eff}}'(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right) = 0$$

$$\Rightarrow \underbrace{\int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \left[\frac{1}{2} \left(\frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \right)^2 + V_{\mathrm{eff}}(\varphi(z), T) \right]}_{\Delta V_{\mathrm{eff}} \equiv \mathcal{P}_{\mathrm{driving}}} = \int_{-\delta}^{\delta} \mathrm{d}z \left[\frac{\partial V_{\mathrm{eff}}}{\partial T} \frac{\mathrm{d}T}{\mathrm{d}z} \right] \equiv \mathcal{P}_{\mathrm{LTE}}$$
$$- \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}z} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) \\- \frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right]$$

$$\int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \varphi(z) \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} \varphi(z) + V_{\mathrm{eff}}'(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right) = 0$$

$$\Rightarrow \underbrace{\int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \left[\frac{1}{2} \left(\frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \right)^2 + V_{\mathrm{eff}}(\varphi(z), T) \right]}_{\Delta V_{\mathrm{eff}} \equiv \mathcal{P}_{\mathrm{driving}}} = \int_{-\delta}^{\delta} \mathrm{d}z \left[\frac{\partial V_{\mathrm{eff}}}{\partial T} \frac{\mathrm{d}T}{\mathrm{d}z} \qquad \equiv \mathcal{P}_{\mathrm{LTE}} \\ - \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}z} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) \qquad \equiv \mathcal{P}_{\mathrm{dissipative}} \\ - \frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \int \mathrm{d}z' \, \pi^R(z, z')\varphi(z') \right]$$

In the planar wall limit $\varphi(x) = \varphi(z)$, with the wall centered at z = 0 in the wall frame

$$\int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \varphi(z) \left(\frac{\mathrm{d}^2}{\mathrm{d}z^2} \varphi(z) + V_{\mathrm{eff}}'(\varphi(z), T) + \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}\varphi(z)} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) + \int \mathrm{d}z' \, \pi^R(z, z') \varphi(z') \right) = 0$$

$$\Rightarrow \underbrace{\int_{-\delta}^{\delta} \mathrm{d}z \, \frac{\mathrm{d}}{\mathrm{d}z} \left[\frac{1}{2} \left(\frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \right)^2 + V_{\mathrm{eff}}(\varphi(z), T) \right]}_{\Delta V_{\mathrm{eff}} \equiv \mathcal{P}_{\mathrm{driving}}} = \int_{-\delta}^{\delta} \mathrm{d}z \left[\frac{\partial V_{\mathrm{eff}}}{\partial T} \frac{\mathrm{d}T}{\mathrm{d}z} \qquad \equiv \mathcal{P}_{\mathrm{LTE}} \\ - \frac{\mathrm{d}m_{\varphi}^2}{\mathrm{d}z} \int_{\mathbf{k}} \delta f(\mathbf{k}, z) \qquad \equiv \mathcal{P}_{\mathrm{dissipative}} \\ - \frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \int \mathrm{d}z' \, \pi^R(z, z')\varphi(z') \right] \quad \equiv \mathcal{P}_{\mathrm{vertex}}$$

The dynamics of a single bubble

The language of non-equilibrium QFT: CTP and 2PI

Example: friction from pair production

4 Conclusions and outlook

At leading order in the gradient expansion

$$\mathcal{P}_{\text{vertex}} \equiv -\int \mathrm{d}z \mathrm{d}z' \frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \pi^R(z, z') \varphi(z') \simeq -\int \frac{\mathrm{d}q^z}{2\pi} i q^z \left|\tilde{\varphi}(q^z)\right|^2 \tilde{\pi}^R(-q^z)$$

At leading order in the gradient expansion

$$\mathcal{P}_{\text{vertex}} \equiv -\int \mathrm{d}z \mathrm{d}z' \frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \pi^R(z, z')\varphi(z') \simeq -\int \frac{\mathrm{d}q^z}{2\pi} iq^z \left|\tilde{\varphi}(q^z)\right|^2 \tilde{\pi}^R(-q^z)$$
$$\left[\mathrm{Im}\tilde{\pi}^R(q) = -\mathrm{Im}\tilde{\pi}^R(-q), \quad \mathrm{Re}\tilde{\pi}^R(q) = \mathrm{Re}\tilde{\pi}^R(-q)\right] = -\int \frac{\mathrm{d}q^z}{2\pi} q^z \left|\tilde{\varphi}(q^z)\right|^2 \mathrm{Im}\tilde{\pi}^R(q^z)$$

At leading order in the gradient expansion

$$\mathcal{P}_{\text{vertex}} \equiv -\int \mathrm{d}z \mathrm{d}z' \frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \pi^R(z, z') \varphi(z') \simeq -\int \frac{\mathrm{d}q^z}{2\pi} i q^z \left|\tilde{\varphi}(q^z)\right|^2 \tilde{\pi}^R(-q^z)$$
$$\left[\mathrm{Im}\tilde{\pi}^R(q) = -\mathrm{Im}\tilde{\pi}^R(-q), \quad \mathrm{Re}\tilde{\pi}^R(q) = \mathrm{Re}\tilde{\pi}^R(-q)\right] = -\int \frac{\mathrm{d}q^z}{2\pi} q^z \left|\tilde{\varphi}(q^z)\right|^2 \mathrm{Im}\tilde{\pi}^R(q^z)$$

Introduce a heavy scalar field χ in the Lagrangian

$$\mathcal{L}_{
m int} \supset -\frac{g}{4}\phi^2\chi^2, \qquad m_\chi \gg m_\phi, T \implies f_\chi \sim 0$$

At leading order in the gradient expansion

$$\mathcal{P}_{\text{vertex}} \equiv -\int \mathrm{d}z \mathrm{d}z' \frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \pi^R(z,z')\varphi(z') \simeq -\int \frac{\mathrm{d}q^z}{2\pi} iq^z \left|\tilde{\varphi}(q^z)\right|^2 \tilde{\pi}^R(-q^z)$$
$$\left[\mathrm{Im}\tilde{\pi}^R(q) = -\mathrm{Im}\tilde{\pi}^R(-q), \quad \mathrm{Re}\tilde{\pi}^R(q) = \mathrm{Re}\tilde{\pi}^R(-q)\right] = -\int \frac{\mathrm{d}q^z}{2\pi} q^z \left|\tilde{\varphi}(q^z)\right|^2 \mathrm{Im}\tilde{\pi}^R(q^z)$$

Introduce a heavy scalar field χ in the Lagrangian

$$\mathcal{L}_{\text{int}} \supset -\frac{g}{4}\phi^2\chi^2, \qquad m_\chi \gg m_\phi, T \Longrightarrow f_\chi \sim 0$$

$$\mathrm{Im}\tilde{\pi}^{R}(q^{z})\supset \mathrm{Im}\left[\begin{matrix}\chi\\ \phi\\ \ddots\\ \chi\end{matrix}\right]$$

At leading order in the gradient expansion

$$\mathcal{P}_{\text{vertex}} \equiv -\int \mathrm{d}z \mathrm{d}z' \frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \pi^R(z,z')\varphi(z') \simeq -\int \frac{\mathrm{d}q^z}{2\pi} iq^z \left|\tilde{\varphi}(q^z)\right|^2 \tilde{\pi}^R(-q^z)$$
$$\left[\mathrm{Im}\tilde{\pi}^R(q) = -\mathrm{Im}\tilde{\pi}^R(-q), \quad \mathrm{Re}\tilde{\pi}^R(q) = \mathrm{Re}\tilde{\pi}^R(-q)\right] = -\int \frac{\mathrm{d}q^z}{2\pi} q^z \left|\tilde{\varphi}(q^z)\right|^2 \mathrm{Im}\tilde{\pi}^R(q^z)$$

Introduce a heavy scalar field χ in the Lagrangian

$$\mathcal{L}_{\text{int}} \supset -\frac{g}{4}\phi^2\chi^2, \qquad m_\chi \gg m_\phi, T \Longrightarrow f_\chi \sim 0$$

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) \supset \operatorname{Im}\left[\underbrace{\overset{\chi}{\overbrace{\phi}}}_{\overbrace{\chi}}\right] = \left| \underbrace{\overset{\varphi}{\overbrace{\chi}}}_{\chi}\right|^{2}$$

At leading order in the gradient expansion

$$\mathcal{P}_{\text{vertex}} \equiv -\int \mathrm{d}z \mathrm{d}z' \frac{\mathrm{d}\varphi(z)}{\mathrm{d}z} \pi^R(z,z')\varphi(z') \simeq -\int \frac{\mathrm{d}q^z}{2\pi} iq^z \left|\tilde{\varphi}(q^z)\right|^2 \tilde{\pi}^R(-q^z)$$
$$\left[\mathrm{Im}\tilde{\pi}^R(q) = -\mathrm{Im}\tilde{\pi}^R(-q), \quad \mathrm{Re}\tilde{\pi}^R(q) = \mathrm{Re}\tilde{\pi}^R(-q)\right] = -\int \frac{\mathrm{d}q^z}{2\pi} q^z \left|\tilde{\varphi}(q^z)\right|^2 \mathrm{Im}\tilde{\pi}^R(q^z)$$

Introduce a heavy scalar field χ in the Lagrangian

$$\mathcal{L}_{\text{int}} \supset -\frac{g}{4}\phi^2\chi^2, \qquad m_\chi \gg m_\phi, T \implies f_\chi \sim 0$$

The imaginary part of the self-energy is computed via CTP cutting rules

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) = -\frac{i}{2} \left(\tilde{\pi}^{>}(q^{z}) - \tilde{\pi}^{<}(q^{z}) \right)$$

ТШ

The self-energy

The imaginary part of the self-energy is computed via CTP cutting rules

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) = -\frac{i}{2} \left(\tilde{\pi}^{>}(q^{z}) - \tilde{\pi}^{<}(q^{z}) \right)$$
$$\simeq \frac{g^{2}}{4} \int_{\mathbf{p},\mathbf{k}_{1},\mathbf{k}_{2}} (2\pi)^{3} \delta^{(3)}(\mathbf{q} - \mathbf{p} + \mathbf{k}_{1} + \mathbf{k}_{2})(2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_{1}}^{(\chi)} - E_{\mathbf{k}_{2}}^{(\chi)})$$
$$\times [f_{\phi}(\mathbf{p}) - f_{\phi}(-\mathbf{p})]$$

The imaginary part of the self-energy is computed via CTP cutting rules

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) = -\frac{i}{2} \left(\tilde{\pi}^{>}(q^{z}) - \tilde{\pi}^{<}(q^{z}) \right)$$
$$\simeq \frac{g^{2}}{4} \int_{\mathbf{p},\mathbf{k}_{1},\mathbf{k}_{2}} (2\pi)^{3} \delta^{(3)}(\underbrace{\mathbf{q}}_{=(0,0,q^{z})} - \mathbf{p} + \mathbf{k}_{1} + \mathbf{k}_{2})(2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_{1}}^{(\chi)} - E_{\mathbf{k}_{2}}^{(\chi)})$$
$$\times [f_{\phi}(\mathbf{p}) - f_{\phi}(-\mathbf{p})]$$

The imaginary part of the self-energy is computed via CTP cutting rules

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) = -\frac{i}{2} \left(\tilde{\pi}^{>}(q^{z}) - \tilde{\pi}^{<}(q^{z}) \right)$$
$$\simeq \frac{g^{2}}{4} \int_{\mathbf{p},\mathbf{k}_{1},\mathbf{k}_{2}} (2\pi)^{3} \delta^{(3)}(\mathbf{q} - \mathbf{p} + \mathbf{k}_{1} + \mathbf{k}_{2})(2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_{1}}^{(\chi)} - E_{\mathbf{k}_{2}}^{(\chi)})$$
$$\times [f_{\phi}(\mathbf{p}) - f_{\phi}(-\mathbf{p})]$$

and the pressure due to pair production reads

$$\mathcal{P}_{\phi \to \chi \chi} = \frac{g^2}{2} \int_{\mathbf{p}, \mathbf{k}_1, \mathbf{k}_2} (2\pi)^2 \delta^{(2)}(\mathbf{p}_{\perp} - \mathbf{k}_{1, \perp} - \mathbf{k}_{2, \perp}) (2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_1}^{(\chi)} - E_{\mathbf{k}_2}^{(\chi)}) \\ \times f_{\phi}(\mathbf{p}) \quad \Delta p^z \quad |\tilde{\varphi}(\Delta p^z)|^2$$

Matthias Carosi | Bubble wall dynamics from non-equilibrium QFT | 26/06/2025

The imaginary part of the self-energy is computed via CTP cutting rules

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) = -\frac{i}{2} \left(\tilde{\pi}^{>}(q^{z}) - \tilde{\pi}^{<}(q^{z}) \right)$$
$$\simeq \frac{g^{2}}{4} \int_{\mathbf{p},\mathbf{k}_{1},\mathbf{k}_{2}} (2\pi)^{3} \delta^{(3)}(\mathbf{q} - \mathbf{p} + \mathbf{k}_{1} + \mathbf{k}_{2})(2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_{1}}^{(\chi)} - E_{\mathbf{k}_{2}}^{(\chi)})$$
$$\times [f_{\phi}(\mathbf{p}) - f_{\phi}(-\mathbf{p})]$$

and the pressure due to pair production reads

$$\mathcal{P}_{\phi \to \chi \chi} = \frac{g^2}{2} \int_{\mathbf{p}, \mathbf{k}_1, \mathbf{k}_2} (2\pi)^2 \delta^{(2)} (\mathbf{p}_{\perp} - \mathbf{k}_{1, \perp} - \mathbf{k}_{2, \perp}) (2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_1}^{(\chi)} - E_{\mathbf{k}_2}^{(\chi)})$$
density of incoming particles $\times f_{\phi}(\mathbf{p}) \quad \Delta p^z \quad |\tilde{\varphi}(\Delta p^z)|^2$
Matthias Carosi | Bubble wall dynamics from non-equilibrium QFT | 26/06/2025

13

The imaginary part of the self-energy is computed via CTP cutting rules

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) = -\frac{i}{2} \left(\tilde{\pi}^{>}(q^{z}) - \tilde{\pi}^{<}(q^{z}) \right)$$
$$\simeq \frac{g^{2}}{4} \int_{\mathbf{p},\mathbf{k}_{1},\mathbf{k}_{2}} (2\pi)^{3} \delta^{(3)}(\mathbf{q} - \mathbf{p} + \mathbf{k}_{1} + \mathbf{k}_{2})(2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_{1}}^{(\chi)} - E_{\mathbf{k}_{2}}^{(\chi)})$$
$$\times [f_{\phi}(\mathbf{p}) - f_{\phi}(-\mathbf{p})]$$

and the pressure due to pair production reads

$$\mathcal{P}_{\phi \to \chi \chi} = \frac{g^2}{2} \int_{\mathbf{p}, \mathbf{k}_1, \mathbf{k}_2} (2\pi)^2 \delta^{(2)} (\mathbf{p}_{\perp} - \mathbf{k}_{1, \perp} - \mathbf{k}_{2, \perp}) (2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_1}^{(\chi)} - E_{\mathbf{k}_2}^{(\chi)})$$
density of incoming particles $\times f_{\phi}(\mathbf{p}) \qquad \Delta p^z \qquad |\tilde{\varphi}(\Delta p^z)|^2$
momentum exchange
Matthias Carosi | Bubble wall dynamics from non-equilibrium QFT | 26/06/2025

The imaginary part of the self-energy is computed via CTP cutting rules

$$\operatorname{Im}\tilde{\pi}^{R}(q^{z}) = -\frac{i}{2} \left(\tilde{\pi}^{>}(q^{z}) - \tilde{\pi}^{<}(q^{z}) \right)$$
$$\simeq \frac{g^{2}}{4} \int_{\mathbf{p},\mathbf{k}_{1},\mathbf{k}_{2}} (2\pi)^{3} \delta^{(3)}(\mathbf{q} - \mathbf{p} + \mathbf{k}_{1} + \mathbf{k}_{2})(2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_{1}}^{(\chi)} - E_{\mathbf{k}_{2}}^{(\chi)})$$
$$\times [f_{\phi}(\mathbf{p}) - f_{\phi}(-\mathbf{p})]$$

and the pressure due to pair production reads

$$\mathcal{P}_{\phi \to \chi \chi} = \frac{g^2}{2} \int_{\mathbf{p}, \mathbf{k}_1, \mathbf{k}_2} (2\pi)^2 \delta^{(2)} (\mathbf{p}_{\perp} - \mathbf{k}_{1, \perp} - \mathbf{k}_{2, \perp}) (2\pi) \delta(E_{\mathbf{p}}^{(\phi)} - E_{\mathbf{k}_1}^{(\chi)} - E_{\mathbf{k}_2}^{(\chi)})$$
density of incoming particles $\times f_{\phi}(\mathbf{p}) \qquad \Delta p^z \qquad |\tilde{\varphi}(\Delta p^z)|^2$

$$\xrightarrow{\text{Fourier tf. of the wall}}$$
Matthias Carosi | Bubble wall dynamics from non-equilibrium QFT | 26/06/2025

Analytic formula for an ultrarelativistic (tanh) wall in the limit of light ϕ -particles

$$\mathcal{P}_{\phi \to \chi \chi}^{\gamma_w \to \infty} \approx \frac{g^2 v_b^2 T^2}{24 \times 32\pi^2} \log\left(\frac{\gamma_w T}{2\pi L_w m_\chi^2}\right)$$

Analytic formula for an ultrarelativistic (tanh) wall in the limit of light ϕ -particles

$$\mathcal{P}_{\phi \to \chi \chi}^{\gamma_w \to \infty} \approx \frac{g^2 v_b^2 T^2}{24 \times 32\pi^2} \log\left(\frac{\gamma_w T}{2\pi L_w m_\chi^2}\right)$$

Analytic formula for an ultrarelativistic (tanh) wall in the limit of light ϕ -particles

$$\mathcal{P}_{\phi \to \chi \chi}^{\gamma_w \to \infty} \approx \frac{g^2 v_b^2 T^2}{24 \times 32\pi^2} \log\left(\frac{\gamma_w T}{2\pi L_w m_\chi^2}\right)$$

Asymptotically approach the result from the kick picture.

Analytic formula for an ultrarelativistic (tanh) wall in the limit of light ϕ -particles

$$\mathcal{P}_{\phi \to \chi \chi}^{\gamma_w \to \infty} \approx \frac{g^2 v_b^2 T^2}{24 \times 32\pi^2} \log\left(\frac{\gamma_w T}{2\pi L_w m_\chi^2}\right)$$

Asymptotically approach the result from the kick picture.

Similarly, we show in our work that particle mixing and transition radiation are also captured within this framework.

- 1 The dynamics of a single bubble
- 2 The language of non-equilibrium QFT: CTP and 2PI
- **B** Example: friction from pair production
- 4 Conclusions and outlook

The full bubble wall dynamics can be described using the language of non-equilibrium QFT (CTP) and the 2PI effective action

- The full bubble wall dynamics can be described using the language of non-equilibrium QFT (CTP) and the 2PI effective action
- In the gradient expansion, we find dynamical equations amenable to numerical implementation, e.g. in WallGo [Eckstedt et al. '24]. These include order by order all thermal and quantum effects

- The full bubble wall dynamics can be described using the language of non-equilibrium QFT (CTP) and the 2PI effective action
- In the gradient expansion, we find dynamical equations amenable to numerical implementation, e.g. in WallGo [Eckstedt et al. '24]. These include order by order all thermal and quantum effects
- In the ultrarelativistic limit, we recover contributions to the friction known from the kick picture, thus showing the completeness of the kinetic approach

- The full bubble wall dynamics can be described using the language of non-equilibrium QFT (CTP) and the 2PI effective action
- In the gradient expansion, we find dynamical equations amenable to numerical implementation, e.g. in WallGo [Eckstedt et al. '24]. These include order by order all thermal and quantum effects
- In the ultrarelativistic limit, we recover contributions to the friction known from the kick picture, thus showing the completeness of the kinetic approach

Future directions

- investigate further out-of-equilibrium effects affecting the wall expansion, such as gauge boson saturation
- study numerically the effect of so far overlooked quantum effects for intermediate wall velocities

BACK-UP SLIDES

Matthias Carosi | Bubble wall dynamics from non-equilibrium QFT | 26/06/2025

The CTP formalism

Time ordering is replaced by ordering on the CTP $\mathcal{T}\to\mathcal{T}_{\rm CTP}.$ We then have four two-point functions

$$\langle \mathcal{T}_{\rm CTP} \phi^+(x) \phi^+(y) \rangle = \langle \mathcal{T} \phi(x) \phi(y) \rangle = \Delta^T(x, y)$$
$$\langle \mathcal{T}_{\rm CTP} \phi^-(x) \phi^-(y) \rangle = \langle \overline{\mathcal{T}} \phi(x) \phi(y) \rangle = \Delta^{\overline{T}}(x, y)$$
$$\langle \mathcal{T}_{\rm CTP} \phi^+(x) \phi^-(y) \rangle = \langle \phi(y) \phi(x) \rangle = \Delta^<(x, y)$$
$$\langle \mathcal{T}_{\rm CTP} \phi^-(x) \phi^+(y) \rangle = \langle \phi(x) \phi(y) \rangle = \Delta^>(x, y)$$

We can then do perturbation theory, but in particular, we will be interested in generating equations of motion. For this, we work with the effective action.

The Wigner transform

To put the equations in a useful form, we go to Wigner space

$$\overline{\Delta}^{ab}(k,x) = \int \mathrm{d}^4 r \, e^{ik \cdot r} \Delta^{ab}\left(x + \frac{r}{2}, x - \frac{r}{2}\right)$$

Generally, the equations contain derivatives in x of all orders. To leading order in the derivative (or gradient) expansion we can solve for the two-point functions

$$\begin{split} \overline{\Delta}^{<}(k,x) &= 2\pi\delta(k^{2}-m^{2})\left[\vartheta(k^{0})f(\mathbf{k},x) + \vartheta(-k^{0})(1+f(-\mathbf{k},x))\right]\\ \overline{\Delta}^{>}(k,x) &= 2\pi\delta(k^{2}-m^{2})\left[\vartheta(k^{0})(1+f(\mathbf{k},x)) + \vartheta(-k^{0})f(-\mathbf{k},x)\right]\\ \overline{\Delta}^{T}(k,x) &= \frac{\mathrm{i}}{k^{2}-m^{2}+\mathrm{i}\varepsilon} + 2\pi\delta(k^{2}-m^{2})\left[\vartheta(k^{0})f(\mathbf{k},x) + \vartheta(-k^{0})f(-\mathbf{k},x)\right]\\ \overline{\Delta}^{\overline{T}}(k,x) &= -\frac{\mathrm{i}}{k^{2}-m^{2}-\mathrm{i}\varepsilon} + 2\pi\delta(k^{2}-m^{2})\left[\vartheta(k^{0})f(\mathbf{k},x) + \vartheta(-k^{0})f(-\mathbf{k},x)\right] \end{split}$$

Matthias Carosi | Bubble wall dynamics from non-equilibrium QFT | 26/06/2025

A comment on the gradient expansion

In our derivation, we made extensive use of the gradient expansion. What is the validity of this approximation?

small field gradients
$$\equiv rac{
abla arphi}{k} \ll 1$$
 $abla arphi \sim rac{1}{L_w}\,, \qquad L_w \equiv$ wall width

 $k\sim\gamma_wT~\equiv~{
m typical}$ momentum of a particle in the wall frame

$$\implies \gamma_w T L_w \gg 1$$

The gradient expansion is valid if the wall is either **fast** or **thick**. For the numerical and analytical results, we assumed the plasma outside the bubble to be **in equilibrium**, which is once again only valid if the wall is very fast.

Mixing

Assume two mixing scalar species χ and s interacting through the background

$$\mathcal{L}_{\text{int}} \supset -\kappa \varphi \chi s$$
, and $m_{\chi} \gg m_s$

Particles χ are absent in the plasma but are generated via mixing as *s*-particles go through the wall. In the ultrarelativistic limit

$$\mathcal{P}_{s \to \chi}^{\gamma_w \to \infty} = \frac{2\kappa^2 v_b^2}{m_\chi^2} \frac{T^2}{24}$$

