Gravitational Waves from a First-Order Phase Transition of the Inflaton

Jörn Kersten

UNIVERSITY OF BERGEN

Based on JK, Seong Chan Park, Yeji Park, Juhoon Son, Liliana Velasco Sevilla, JCAP 04 (2025) 053 [arXiv:2412.17278]

A Window to the Very Early Universe?

• Pulsar Timing Arrays

→ Evidence for Stochastic GW Background

NANOGrav, ApJL **951** (2023) EPTA, InPTA, A&A **678** (2023) Parkes PTA, ApJL **951** (2023) CPTA, RAA **23** (2023)

- Lower frequency than LIGO/Virgo events
 Mergers of supermassive black holes?
- More interesting: particle physics origin
 - First-Order Phase Transition (FOPT)
 - Cosmic strings or domain walls
 - Inflation

D. Champion/MPI for Radio Astronomy

Higgs Inflation

Bezrukov & Shaposhnikov, PLB 659 (2008)

$$\mathcal{L}_J = \sqrt{-g_J} \left[\frac{M_{\mathsf{P}}^2}{2} R_J + \xi \phi^{\dagger} \phi R_J + g_J^{\mu\nu} (D_{\mu} \phi)^{\dagger} (D_{\nu} \phi) - V_J(\phi) + \dots \right]$$

- J: Jordan frame
- R: Ricci scalar
- V_J: SM Higgs potential
- ξ : non-minimal coupling to gravity
 - Consistent with all symmetries
 - · Required for renormalization in curved spacetime
 - Not necessarily small

Higgs Inflation

Bezrukov & Shaposhnikov, PLB 659 (2008)

$$\mathcal{L}_J = \sqrt{-g_J} \left[\frac{M_{\mathsf{P}}^2}{2} R_J + \xi \phi^{\dagger} \phi R_J + g_J^{\mu\nu} (D_{\mu} \phi)^{\dagger} (D_{\nu} \phi) - V_J(\phi) + \dots \right]$$

- J: Jordan frame
- R: Ricci scalar
- V_J: SM Higgs potential
- ξ : non-minimal coupling to gravity
 - Consistent with all symmetries
 - · Required for renormalization in curved spacetime
 - Not necessarily small
- Def.: conformal factor $\Omega^2(\phi) \equiv 1 + 2\xi \frac{\phi^{\dagger}\phi}{M_p^2}$

$$\mathcal{L}_J = \sqrt{-g_J} \left[\frac{M_{\mathsf{P}}^2}{2} \, \Omega^2(\phi) \, R_J + g_J^{\mu\nu} (D_\mu \phi)^{\dagger} (D_\nu \phi) - V_J(\phi) + \dots \right]$$

• Unitary gauge:
$$\phi = \begin{pmatrix} 0 \\ (\varphi + v)/\sqrt{2} \end{pmatrix}$$

- Weyl transformation to Einstein frame: $g_J \rightarrow g_E \equiv \Omega^2(\varphi) g_J$
- Canonical normalization: $\chi = \int_{0}^{\varphi} d\varphi \sqrt{\frac{3}{2} \frac{(\Omega^{2}, \varphi)^{2}}{\Omega^{4}} + \frac{1}{\Omega^{2}}}$

• Unitary gauge:
$$\phi = \begin{pmatrix} 0 \\ (\varphi + v)/\sqrt{2} \end{pmatrix}$$

- Weyl transformation to Einstein frame: $g_J \rightarrow g_E \equiv \Omega^2(\varphi) g_J$
- Canonical normalization: $\chi = \int_{0}^{\varphi} d\varphi \sqrt{\frac{3}{2} \frac{(\Omega^{2}, \varphi)^{2}}{\Omega^{4}} + \frac{1}{\Omega^{2}}}$

$$\mathcal{L}_{E} = \sqrt{-g_{E}} \left[\frac{M_{P}^{2}}{2} R_{E} + \frac{1}{2} g_{E}^{\mu\nu} (\partial_{\mu}\chi) (\partial_{\nu}\chi) - V_{E}(\chi) + \dots \right]$$

- Minimal coupling to gravity but modified potential
- Potential flat for large field values ~> slow-roll

Higgs Inflation

Bezrukov & Shaposhnikov, PLB 659 (2008)

- Minimal coupling to gravity but modified potential
- Potential flat for large field values ~> slow-roll

Higgs Inflation in a Dark Sector

$$\mathcal{L}_{J} = \sqrt{-g_{J}} \left[\frac{M_{\mathsf{P}}^{2}}{2} \, \Omega^{2}(\phi) \, R_{J} + g_{J}^{\mu\nu} (D_{\mu}\phi)^{\dagger} (D_{\nu}\phi) - \frac{1}{4} g_{J}^{\mu\rho} g_{J}^{\nu\sigma} X_{\mu\nu} X_{\rho\sigma} - V_{J}(\phi) \right]$$
$$V_{J}(\phi) = -\mu^{2} \phi^{\dagger} \phi + \lambda \, (\phi^{\dagger}\phi)^{2} = \lambda \left(\phi^{\dagger} \phi - \frac{v^{2}}{2} \right)^{2} + \text{const.}$$

- $U(1)_X$ gauge symmetry with gauge coupling g
- SM singlet scalar ϕ with $U(1)_X$ charge
 - Spontaneously breaks $U(1)_X \rightsquigarrow \text{FOPT} \rightsquigarrow \text{GW}$
 - Non-minimal coupling to gravity ~ Higgs-inflation-like inflation

Higgs Inflation in a Dark Sector

$$\mathcal{L}_{J} = \sqrt{-g_{J}} \left[\frac{M_{P}^{2}}{2} \Omega^{2}(\phi) R_{J} + g_{J}^{\mu\nu} (D_{\mu}\phi)^{\dagger} (D_{\nu}\phi) - \frac{1}{4} g_{J}^{\mu\rho} g_{J}^{\nu\sigma} X_{\mu\nu} X_{\rho\sigma} - V_{J}(\phi) \right]$$

$$V_J(\phi) = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2 = \lambda \left(\phi^{\dagger} \phi - \frac{v^2}{2} \right) + \text{const.}$$

- $U(1)_X$ gauge symmetry with gauge coupling g
- SM singlet scalar ϕ with $U(1)_X$ charge
 - Spontaneously breaks $U(1)_X \rightsquigarrow \text{FOPT} \rightsquigarrow \text{GW}$
 - Non-minimal coupling to gravity ~ Higgs-inflation-like inflation
- Optional: fermions with mass from Yukawa coupling
- Weak coupling to SM ~> reheating

$$\mathcal{L}_{\psi} = \sqrt{-g_J} \sum_{i=1}^{n_{\psi}} \left[\overline{\psi}_{Li} i \not\!\!{D} \psi_{Li} + \overline{\psi}_{Ri} i \not\!\!{D} \psi_{Ri} - \frac{y}{2} \left(\overline{\psi}_{Li} \phi \psi_{Li}^{c} + \overline{\psi}_{Ri} \phi \psi_{Ri}^{c} + \text{h.c.} \right) \right]$$

Scalar potential with 1-loop and finite-temperature corrections

- \rightarrow Potential barrier around $T \sim v$
- → FOPT possible

Scalar potential with 1-loop and finite-temperature corrections

- \rightarrow Potential barrier around $T \sim v$
- → FOPT possible
- GW spectrum determined by
 - Nucleation temperature T_n

 - $\beta \nleftrightarrow duration$

Calculated with help from CosmoTransitions Wainwright, Comput. Phys. Commun. 183 (2012)

Effective Scalar Potential at Finite Temperature

$$V(h_{c}, T) = V_{\text{tree}}(h_{c}) + V_{1-\text{loop}}(h_{c}) + V_{\text{th}}(h_{c}, T)$$

$$V_{\text{tree}}(h_{c}) = -\frac{\mu^{2}}{2}h_{c}^{2} + \frac{\lambda}{4}h_{c}^{4}$$

$$V_{1-\text{loop}}(h_{c}) = \sum_{i=h,\chi,g,f} \frac{n_{i}}{64\pi^{2}}m_{i}^{4}(h_{c})\left[\ln\frac{|m_{i}^{2}(h_{c})|}{v^{2}} - C_{i}\right]$$

$$V_{\text{th}}(h_{c}, T) = \sum_{i=h,\chi,g} \frac{n_{i}}{2\pi^{2}}T^{4} \operatorname{Re} J_{b}\left(\frac{m_{i}^{2}(h_{c})}{T^{2}}\right) + \frac{n_{f}}{2\pi^{2}}T^{4} J_{f}\left(\frac{m_{i}^{2}(h_{c})}{T^{2}}\right)$$

$$m_{h}^{2}(h_{c}) = -\mu^{2} + 3\lambda h_{c}^{2}$$

$$m_{\chi}^{2}(h_{c}) = -\mu^{2} + \lambda h_{c}^{2}$$

$$m_{g}^{2}(h_{c}) = g^{2}h_{c}^{2}$$

Gravitational Wave Spectrum I

Gravitational Wave Spectrum II

Parameter Space with 1 Fermion Pair

CMB measurements (pre-ACT)

Scalar power spectrum amplitude $A_s = (2.098 \pm 0.023) \times 10^{-9}$ Scalar spectral index $n_s = 0.9649 \pm 0.0042$ Tensor-to-scalar power ratior < 0.036 (95% CL)Planck, A&A 641 (2020); BICEP/Keck, PRL 127 (2021)

CMB measurements (pre-ACT)

Scalar power spectrum amplitude $A_s = (2.098 \pm 0.023) \times 10^{-9}$ Scalar spectral index $n_s = 0.9649 \pm 0.0042$ Tensor-to-scalar power ratior < 0.036 (95% CL)Planck, A&A 641 (2020); BICEP/Keck, PRL 127 (2021)

Model results (60 e-foldings)

- *n_s* ≃ 0.965
- *r* ~ 0.003
- $A_s \simeq 5.1 \, \frac{\lambda(M_{\rm P})}{\xi^2} \quad \rightsquigarrow \quad \xi \simeq 5 \times 10^4 \, \sqrt{\lambda(M_{\rm P})}$

Inflationary Observables

Model results (60 e-foldings)

- $n_s \simeq 0.965$
- $r \simeq 0.003$
- $A_s \simeq 5.1 \, \frac{\lambda(M_P)}{\xi^2} \quad \rightsquigarrow \quad \xi \simeq 5 \times 10^4 \, \sqrt{\lambda(M_P)}$

	$g(M_{\rm P})$	$\lambda(M_{P})$	$y(M_{\rm P})$	n_ψ	ξ
BP1	0.98	0.37	-	0	3×10^4
BP2	0.99	0.57	-	0	4×10^4
BP3	1.00	0.92	-	0	5×10^4
BP4	1.02	2.22	-	0	7×10^4
BP5	0.79	$\simeq 0$	1.10	1	$\mathcal{O}(1)$
BP6	0.55	$\simeq 0$	0.74	1	$\mathcal{O}(1)$
BP7	0.35	$\simeq 0$	0.48	1	$\mathcal{O}(1)$

Inflationary Observables

Model results (60 *e*-foldings)

- $n_s \simeq 0.965$
- *r* ~ 0.003
- $A_s \simeq 5.1 \, \frac{\lambda(M_P)}{\xi^2} \quad \rightsquigarrow \quad \xi \simeq 5 \times 10^4 \, \sqrt{\lambda(M_P)}$

	$g(M_{\rm P})$	$\lambda(M_{\rm P})$	$y(M_{\rm P})$	n_ψ	ξ
BP1	0.98	0.37	-	0	3×10^4
BP2	0.99	0.57	-	0	4×10^4
BP3	1.00	0.92	-	0	$5 imes 10^4$
BP4	1.02	2.22	-	0	7×10^4
BP5	0.79	≃ 0	1.10	1	$\mathcal{O}(1)$
BP6	0.55	≃ 0	0.74	1	$\mathcal{O}(1)$
BP7	0.35	$\simeq 0$	0.48	1	$\mathcal{O}(1)$

- With fermions: renormalization group running allows $\xi \sim 1$
- Analogous to Critical Higgs Inflation Hamada et al., PRL 112 (2014), PRD 91 (2015)

Jörn Kersten

- Unified framework for inflation and first-order phase transition
- Dark U(1)_X and non-minimal coupling to gravity
 ~ gravitational waves and inflation from same scalar
- Peak GW frequencies between 10^{-2} Hz and 10^{8} Hz

- Unified framework for inflation and first-order phase transition
- Dark U(1)_X and non-minimal coupling to gravity

 gravitational waves and inflation from same scalar
- Peak GW frequencies between 10^{-2} Hz and 10^{8} Hz
- Future improvements
 - Calculation of bubble wall velocity using WallGo Ekstedt et al., JHEP 04 (2025)
 - Inflaton coupling to SM ~> reheating
 - Dark Matter
 - Different gauge groups

First-Order Phase Transitions

Kinnunen et al., Rep. Prog. Phys. 81 (2018)

- High temperature: potential minimum at $\phi = 0$
- 2 $T < T_c$: deeper mimimum at $\phi = v$, separated by barrier
- Tunneling ~ bubbles of true vacuum
- GW from expanding bubbles and surrounding plasma

T_n: temperature at which probability of nucleating 1 bubble per horizon volume is ~ 1

•
$$\alpha = \frac{1}{\rho_{\text{rad}}} \left[\Delta V(h_c, T) - T \frac{dV(h_c, T)}{dT} \right] \Big|_{T=T_n}$$

•
$$\frac{\beta}{H(T_n)} = T_n \left. \frac{d}{dT} \frac{S_3}{T} \right|_{T_n} \simeq \left(\frac{T_n}{T - T_n} \right) \left(\frac{S_3(T)}{T} - \frac{S_3(T_n)}{T_n} \right)$$

(*T*: arbitrary reference temperature not too far from T_n)

Expressions modified for large supercooling

- SM: no FO electroweak PT for Higgs mass ≳ 70 GeV Kajantie et al., PRL 77 (1996); Karsch et al., NP Proc. Suppl. 53 (1997) Csikor et al., PRL 82 (1999)
- Most famous: SUSY with light stop Carena et al., PLB 380 (1996); Espinosa, NPB 475 (1996) Delepine et al., PLB 386 (1996); Cline & Kainulainen, NPB 482 (1996); ...
- Minimal from model building perspective: 2HDM Dorsch et al., JHEP 10 (2013); Basler et al., JHEP 02 (2017) Andersen et al., PRL 121 (2018); ...
- Minimal from EFT perspective: higher-dimensional operators Zhang, PRD 47 (1993); Grojean et al., PRD 71 (2005) Bödeker et al., JHEP 02 (2005); Chala et al., JHEP 07 (2018); ...
- Many recent works Review: Roshan & White, arXiv:2401.04388