PATHS THROUGH THE DARK: COMPARING APPROACHES FOR FOPTS

CRISTINA PUCHADES-IBÁÑEZ

In collaboration with Eric Madge, Maura E. Ramírez-Quezada and Pedro Schwaller

GW detection opens a window to study physics BSM

GWs down to the nHz regime

PTA: EPTA, NANOGrav, IPTA

SMBHB **New Physics**

FOPTs DW CS Axion dynamics

GW detection opens a window to study physics BSM

GWs down to the nHz regime PTA: EPTA, NANOGrav, IPTA SMBHB **New Physics** DW CS Axion dynamics FOPTs

Image credit: David Champion

Supercooling: Delay of the FOPT below Tc

large release of latent heat $\, lpha \,$

Neglect Daisy contributions

What we wanna explore now?

OPA vs. HT expansion and full form of the 4D potential adding Daisy resumation.

Daisy resumation vs. Dimensional reduction (DR) EFTs

Effects of 2-Loop corrections using DR.

Perturbation theory breakdown — IR divergences

DAISY RESUMATION

$$V_{\rm ring}(\phi, T) = -\frac{T}{12\pi} \sum_{i} n_i \left[\left(m_i^2(\phi, T) \right)^{3/2} - \left(m_i^2 (\phi, T) \right)^{1/2} \right]$$

DIMENSIONAL REDUCTION (DR)

ultrasoft $g^{3/2}T$ Integrate massive temporal scalars

SET UP

Dark photon: Extend SM with an additional U(1 Supercooling

1-Loop potencial in the MS scheme:

 $V_{1-\text{loop}}(\phi) = -\frac{m^2}{2}\phi^2 + \frac{\lambda}{4}\phi^4 + \frac{3(g^2\phi^2)^2}{64\pi^2} \left[\log\frac{g^2\phi^2}{\mu^2} - \frac{5}{6}\right] + \frac{(3\lambda\phi^2)^2}{64\pi^2} \left[\log\frac{g^2\phi^2}{\mu^2} - \frac{5}{6}\right] + \frac{5}{6}\left[\log\frac{g^2\phi^2}{\mu^2} - \frac{5}{6}\right] + \frac{5}{$

$$\frac{(2-m^2)^2}{64\pi^2} \left| \log \frac{\left| 3\lambda\phi^2 - m^2 \right|}{\mu^2} - \frac{3}{2} \right| + \frac{(\lambda\phi^2 - m^2)^2}{64\pi^2} \left| \log \frac{\left| \lambda\phi^2 - m^2 \right|}{\mu^2} \right|$$

SET UP

Dark photon: Extend SM with an additional U(1). Supercooling

1-Loop potencial in the MS scheme:

 $V_{1-\text{loop}}(\phi) = -\frac{m^2}{2}\phi^2 + \frac{\lambda}{4}\phi^4 + \frac{3(g^2\phi^2)^2}{64\pi^2} \left[\log\frac{g^2\phi^2}{\mu^2} - \frac{5}{6}\right] + \frac{(3\lambda\phi^2)^2}{64\pi^2} + \frac{5}{6}\left[\log\frac{g^2\phi^2}{\mu^2} - \frac{5}{6}\right] + \frac{5}{6}\left[\log\frac{g^2\phi^2}{\mu^$

Breaking parameter $\epsilon = m^2/v^2$

$$\lambda = \frac{g^4}{16\pi^2} \left(1 - 3\log\frac{g^2 v^2}{\mu^2} \right) + \epsilon + \frac{\lambda}{16\pi^2} \left[3\left(3\lambda - \epsilon\right) \left(1 - \log\frac{|3\lambda - \epsilon|}{\mu^2/v^2} \right) + \left(\lambda - \epsilon\right) \left(1 - \log\frac{|\lambda - \epsilon|}{\mu^2/v^2} \right) \right]$$

If
$$\epsilon \ll \frac{g^4}{16\pi^2}$$
 $\lambda \sim \frac{g^4}{16\pi^2}$

$$\frac{(2-m^2)^2}{64\pi^2} \left[\log \frac{\left| 3\lambda\phi^2 - m^2 \right|}{\mu^2} - \frac{3}{2} \right] + \frac{(\lambda\phi^2 - m^2)^2}{64\pi^2} \left[\log \frac{\left| \lambda\phi^2 - m^2 \right|}{\mu^2} \right]$$

SET UP

Dark photon: Extend SM with an additional U(1). Supercooling

1-Loop potencial in the MS scheme:

 $V_{1-\text{loop}}(\phi) = -\frac{m^2}{2}\phi^2 + \frac{\lambda}{4}\phi^4 + \frac{3(g^2\phi^2)^2}{64\pi^2} \left[\log\frac{g^2\phi^2}{\mu^2} - \frac{5}{6}\right] + \frac{(3\lambda\phi^2)^2}{64\pi^2} \left[\log\frac{g^2\phi^2}{\mu^2} - \frac{5}{6}\right] + \frac{5}{6} \left[\log\frac{g^2\phi^2}{\mu$

Breaking parameter $\epsilon = m^2/v^2$

$$\lambda = \frac{g^4}{16\pi^2} \left(1 - 3\log\frac{g^2 v^2}{\mu^2} \right) + \epsilon + \frac{\lambda}{16\pi^2} \left[3\left(3\lambda - \epsilon\right) \left(1 - \log\frac{|3\lambda - \epsilon|}{\mu^2/v^2} \right) + \left(\lambda - \epsilon\right) \left(1 - \log\frac{|\lambda - \epsilon|}{\mu^2/v^2} \right) \right]$$

If
$$\epsilon \ll \frac{g^4}{16\pi^2}$$
 $\lambda \sim \frac{g^4}{16\pi^2}$

$$\frac{(2-m^2)^2}{64\pi^2} \left[\log \frac{\left| 3\lambda\phi^2 - m^2 \right|}{\mu^2} - \frac{3}{2} \right] + \frac{(\lambda\phi^2 - m^2)^2}{64\pi^2} \left[\log \frac{\left| \lambda\phi^2 - m^2 \right|}{\mu^2} \right]$$

But DRalgo power counting $g^2 \sim \lambda \sim m^2$

MATCHING 3D AND 4D THEORY

couplings

$$\left[g^4\left(2-3L_b\right)+6g^2\lambda L_b-10\lambda^2 L_b\right]$$

$$\frac{I'}{\tau^2} \left[24\lambda - g^2 \left(L_b - 4 \right) \right]$$

$$+ \frac{g^4 (8 + 216c_+ + 39L_b)T^2}{576\pi^2} + \frac{\lambda^2 (12c_+ + 5L_b)T^2}{24\pi^2}$$

$$\frac{\lambda_b)T^2}{32\pi^2} - \frac{8g_{3d}^4 - 16g_{3d}^2\lambda_{3d} + 16\lambda_{3d}^2 + \lambda_{A\phi}^2}{32\pi^2} \log \frac{\mu_3}{\mu_R}$$

$$L_b = \log \frac{\mu_R^2 e^{2\gamma_E}}{16\pi^2 T^2}$$

DIFFERENT APPROACHES

4D: $V_{eff}(\phi, T) = V_{tree}(\phi) + V_{CW}(\phi) + V_T(\phi, T) + V_{daisy}(\phi, T)$

 $\phi_{3d} \to \phi/\sqrt{T}$

DIFFERENT APPROACHES

4D: $V_{eff}(\phi, T) = V_{tree}(\phi) + V_{CW}(\phi) + V_T(\phi, T) + V_{daisy}(\phi, T)$

3D soft: NLO (1-Loop):

> - masses at LO + couplings NLO

NLO

 $\phi_{3d} \to \phi/\sqrt{T}$

DIFFERENT APPROACHES

4D: $V_{eff}(\phi, T) = V_{tree}(\phi) + V_{CW}(\phi) + V_T(\phi, T) + V_{daisy}(\phi, T)$

NLO (1-Loop): 3D soft:

> - masses at LO + couplings NLO

- masses at NLO with 3d couplings NLO+couplings NLO

 $\phi_{3d} \to \phi/\sqrt{T}$

NNLO (2-Loop):

- masses at NLO with 3d couplings NLO+couplings NLO

- V-LO masses NLO with couplings at LO + V-NLO+V-NNLO masses LO and couplings LO

4D Full

---- 4D HT

- 3D NLO m-LO

- ---- 3D NLO with m-NLO
- 3D NNLO m,coup-NLO
- ---- 3D NNLO m-NLO coup-LO

FOPT PARAMETERS

Espinosa:

$$\frac{S_3}{T} = \frac{32\pi\sqrt{2}}{3} \int_0^{\phi_0} d\phi \, \frac{\left[V_{\text{eff}}(\phi, T) - V_t(\phi)\right]^{3/2}}{\left(\frac{dV_t}{d\phi}\right)^2}$$

Cristina Puchades Ibáñez

Cristina F

FOPT PARAMETERS

Espinosa:

$$\frac{S_3}{T} = \frac{32\pi\sqrt{2}}{3} \int_0^{\phi_0} d\phi \, \frac{\left[V_{\text{eff}}(\phi, T) - V_t(\phi)\right]^{3/2}}{\left(\frac{dV_t}{d\phi}\right)^2} \qquad \begin{array}{c} 1000 \\ 1000 \\ 500 \end{array}$$

$$\alpha \simeq \frac{\Delta V_{CW}^{NLO}}{\rho_*} \quad \rho_* = \frac{\pi^2}{30} g_* T_*^4 \qquad \stackrel{5}{100}$$
$$\frac{\Gamma(T_n)}{H(T_n)^4} = 1 \qquad \frac{\beta}{H_*} = T_* \left. \frac{d}{dT} \left(\frac{S_3}{T} \right) \right|_{T=T_*} \qquad 50$$

For more details look https://arxiv.org/pdf/2312.12413 M. Kierkla, B. Siezewska, T. V. I. Tenkanen and J. van de Vis

RESULTS

- Numeric problems.
- The LO with NLO masses and the NNLOs make a difference for small couplings.
- LO with LO masses is very close to the 4D theory: DR includes daisy

CONCLUSIONS AND IMPROVEMENTS

GW spectrum in the relativistic limit from https://arxiv.org/pdf/2403.05615 by I. Baldes, M. Ditch, Y. Gouttenoire and F. Sala

Improve numerics.

Explore the effect of the running.

Consistent power counting

Effect of V-NLO with LO masses negligible.

Effect of V-NLO with NLO masses and V-NNLO bigger as we go to smaller couplings.

CONCLUSIONS AND IMPROVEMENTS

GW spectrum in the relativistic limit from https://arxiv.org/pdf/2403.05615 by I. Baldes, M. Ditch, Y. Gouttenoire and F. Sala

Improve numerics.

Explore the effect of the running.

Consistent power counting

Effect of V-NLO with LO masses negligible.

Effect of V-NLO with NLO masses and V-NNLO bigger as we go to smaller couplings.

Puchades Ibáñez

CONCLUSIONS AND IMPROVEMENTS

GW spectrum in the relativistic limit from https://arxiv.org/pdf/2403.05615 by I. Baldes, M. Ditch, Y. Gouttenoire and F. Sala

Improve numerics.

Explore the effect of the running.

Consistent power counting

Effect of V-NLO with LO masses negligible.

Effect of V-NLO with NLO masses and V-NNLO bigger as we go to smaller couplings.

Puchades Ibáñez

