The (complicated) story of Primordial Black Holes production in cosmological Phase Transitions

Piotr Toczek,

Faculty of Physics, University of Warsaw

in collaboration with Marek Lewicki and Ville Vaskonen

Why would we expect PBHs to form?

"old" phase

"new" phase

$$\Gamma(t) = H_I^4 e^{\beta t}$$

$$\langle \boldsymbol{\phi} \rangle = \mathbf{0}$$

"old" phase

"new" phase

"old" phase "new" phase

Statistical nature of bubble nucleation inhomogeneitites

Slow, supercooled transition period of thermal inflation

Statistical nature of bubble nucleation inhomogeneitites

Slow, supercooled transition period of thermal inflation

$$\dot{\rho}_r + 4H\rho_r = -\dot{\rho}_v$$

Large fluctuations of energy density

$$\delta = \frac{\rho - \rho_b}{\rho_b}$$

Strategy:

perform the evolution of different-sized patches described by the wavenumber k

$$\Gamma(t) \approx H_I^4 e^{\beta t}$$

Critical scaling law

$$M(\delta) = \kappa M_k (\delta - \delta_c)^{\gamma}$$

$$\delta_c = 0.55$$

Critical scaling law

$$M(\delta) = \kappa M_k (\delta - \delta_c)^{\gamma}$$

$$\delta_c = 0.55$$

PBH formation

GRAVITATIONAL WAVES

During phase transition:

- bubble collisions
- sound waves in plasma

D. Weir, University of Helsinki

GRAVITATIONAL WAVES

During phase transition:

- bubble collisions
- sound waves in plasma

Second order effects?

scalar induced gravitational waves

Energy density fluctuations GWs

SCALAR INDUCED GRAVITATIONAL WAVES

GRAVITATIONAL WAVES

Based on work by G. Franciolini, Y. Gouttenoire and R. Jinno [2503.01962]

THE TROUBLE BEHIND IT ALL

Discussing energy density fluctuations, we introduce

THE TROUBLE BEHIND IT ALL

We are working with objects in linear regime of GR perturbation theory

THE TROUBLE BEHIND IT ALL

We are working with objects in linear regime of GR perturbation theory

We have to employ full linearized GR full linearized Ism!

LINEARIZED GENERAL RELATIVITY

Gauge dependence

Gauge invariant quantities $\Phi_B, \Psi_B, \zeta, \mathcal{R}, \delta\rho_m$

Gauge freedom

- longitudinal gauge
 - comoving gauge

...

Critical scaling law

$$M(\boldsymbol{\delta^{(C)}}) = \kappa M_k \left(\boldsymbol{\delta^{(C)}} - \boldsymbol{\delta_c^{(C)}}\right)^{\gamma}$$

$$\delta_c^{(C)} = 0.55$$

$$\boldsymbol{\delta^{(c)}} = \frac{\boldsymbol{\rho^{(c)}} - \rho_b}{\rho_b} = \frac{\delta \rho_m}{\rho_b}$$

STRATEGY

Solve the dynamics in different Hubble patches during the transition and find the distribution of $\delta^{(C)}$ working in the comoving gauge

OR

Compute the evolution in the gauge of your choice and translate the density contrast $\delta^{(*)}$ into $\delta^{(C)}$

STRATEGY

Solve the dynamics in different Hubble patches during the transition and find the distribution of $\delta^{(C)}$ working in the comoving gauge

OR

Compute the evolution in the gauge of your choice and translate the density contrast $\delta^{(*)}$ into $\delta^{(C)}$

RESULTS

G. Franciolini, Y. Gouttenoire, R. Jinno, arXiv: 2503.01962

RESULTS

G. Franciolini, Y. Gouttenoire, R. Jinno, arXiv: 2503.01962

CONCLUSIONS

No PBHs from first-order phase transitions

No visible secondary GW signals

• Expand the nucleation rate to 2nd order

$$\Gamma(t) \approx H_I^4 e^{\beta t - \gamma^2 t^2}$$

• Expand the nucleation rate to 2nd order

Does not help

PBH formation

Expand the nucleation rate to 2nd order

$$\Gamma(t) \approx H_I^4 e^{\beta t - \gamma^2 t^2}$$

 Include the energy flux from bubble walls travelling inside/outside the patch

Expand the nucleation rate to 2nd order

$$\Gamma(t) \approx H_I^4 e^{\beta t - \gamma^2 t^2}$$

Include the energy flux from bubble walls travelling

inside/outside the patch

Expand the nucleation rate to 2nd order

$$\Gamma(t) \approx H_I^4 e^{\beta t - \gamma^2 t^2}$$

Include the energy flux from bubble walls travelling

inside/outside the patch

Expand the nucleation rate to 2nd order

$$\Gamma(t) \approx H_I^4 e^{\beta t - \gamma^2 t^2}$$

 Include the energy flux from bubble walls travelling Work in progress

inside/outside the patch

Expand the nucleation rate to 2nd order

$$\Gamma(t) \approx H_I^4 e^{\beta t - \gamma^2 t^2}$$

- Include the energy flux from bubble walls travelling inside/outside the patch
- Consider different EoS after the transition:
 Scalar field oscillation early MD
 QCD phase transition

• Expand the nucleation rate to 2nd order

$$\Gamma(t) \approx H_I^4 e^{\beta t - \gamma^2 t^2}$$

- Include the energy flux from bubble walls travelling inside/outside the patch
- Consider different EoS after the transition:
 Scalar field oscillation early MD
 QCD phase transition

Distant (?)
Future work

Thank you!

PBHs AS DARK MATTER CANDIDATES

B. Carr, K. Kohri, Y. Sendouda,J. Yokoyama, *Rept. Prog. Phys.* 84 (2021) 11, 116902

SUPERCOOLED PHASE TRANSITION

nucleation of true vacuum bubbles

$$\Gamma(t) \approx H_I^4 e^{\beta t}$$

Transition strength

$$\alpha \approx \frac{\Delta V}{\rho_r} \gg 1$$

bubble wall velocity

$$v_w \approx 1$$

density distribution $P_k(\delta)$

fraction of total energy density collapsing to PBHs

present PBH mass function

$$\psi(M) = \int d \ln k \, \beta_k(M) \frac{\rho_r(T_k)}{\rho_c} \frac{s(T_0)}{s(T_k)}$$

PBH abundance $\Omega_{PBH} = \int d \ln M \, \psi(M)$

GRAVITATIONAL WAVES

GRAVITATIONAL WAVES

