Testing cosmic inflation with gravitational wave experiments

Gianmassimo Tasinato

Swansea University and University of Bologna

Thanks to many collaborators within LISA CosWG and collaborators in Swansea: Marisol Cruz, Aya Ghaleb, Ameek Malhotra, Alisha Marriott-Best, Ivonne Zavala

Testing cosmic inflation with gravitational wave experiments

Gianmassimo Tasinato

Thanks to many collaborators within LISA CosWG and collaborators in Swansea: Marisol Cruz, Aya Ghaleb, Ameek Malhotra, Alisha Marriott-Best, Ivonne Zavala

Swansea University and University of Bologna

Early Universe phenomena source stochastic gravitational wave backgrounds (SGWB)

Cosmological Inflation \triangleright QM production of GW from a brief phase of quasi-exponential expansion

- ▷ First-order cosmological phase transitions Collisions of bubbles generate GW

Early Universe phenomena source stochastic gravitational wave backgrounds (SGWB)

Early Universe phenomena source stochastic gravitational wave backgrounds (SGWB)

Cosmic strings Dynamics and interactions of strings generate GW

If suitable conditions are satisfied, the SGWB signal can be loud enough to be detectable with GW experiments

> We focus on this case in what Follows

Early Universe phenomena source stochastic gravitational wave backgrounds (SGWB)

Comoving scales

Let's see if we can use them for probing the early universe

How to characterize the SGWB?

- Frequency dependence
- Anisotropies
- Circular polarization

SCALAR INDUCED GW

> Rich frequency profile of SGWB energy parameter $\Omega_{\rm GW} = \frac{1}{\rho_{\rm cr}} \frac{d\rho_{\rm GW}}{d\ln f}$

SCALAR INDUCED GW

Rich frequency profile of SGWB energy parameter \triangleright Inflationary models with inflection points \rightarrow rapid growth of primordial $\mathcal{P}_{\mathcal{C}}$

[Kinney et al], [Garcia-Bellido et al]

SCALAR INDUCED GW

SGWB produced at 2nd order in perturbations during RD or MD

Smoking gun of cosmological sources, since astro SGWB have power-law profiles.

Plots from [Bartolo et al.]

How to measure? The case of LISA

LISA The Laser Interferometer Space Antenna Observing gravitational waves from space	
Cosmic Vision Themes	The Gravitational Universe
Primary goals	Observing low-frequency gravitational waves (from 0.1 mHz to 0.1 Hz) and studying their various sources from across the cosmos
Orbit	Three spacecraft in an Earth- trailing heliocentric orbit about 50 million km from Earth (inter-spacecraft separation of 2.5 million km)
Launch	2037
Lifetime	Four years, with possible six- year extension
Туре	L-class mission

It probes a specific GW frequency range and amplitude that cannot be investigated by other means

What does LISA measure?

- Time delays between light signals travelling through interferometer arms
- Essential to identify convenient combination of signals that reduce systematic noise
- Time-delay interferometry

How to measure? The case of LISA

- 1. First measure shape of the signal: single peak, two peaks, etc 2. Match with theoretical template \rightarrow Fit parameters with data

² 2^{How}H8⁴ H8⁴ H8

Firstrichangeterize the shape of signal

- 8 GWbinner code
- Б
 - 3-nt fürnt tone toppidet and
- 2-pf yasekjant for a stand the reequeencity
- The share for the bispectrum in the G Ttronal" degrees
- Enhanced in squeezed configuration 9Hon Sean 4 Rosen
- 9. lada a constant of the sort of the sort
- the with a gottonal degrees of refused on
- ... then man have [geto] #
- MarceSmirnov/
- Fality of an isotropic SGWB [Seto, nd power law.
- [Seto] derstand what induces anisotropies LAtler dupfing tensors 10^{-3} building from nation of Jackson of freedom

Reconstructing curvature power spectrum Our method

strong assumptions regarding functional form of spectrum

Similar methods have been previously used for the CMB

Reconstruct P_{ζ} using linear interpolating splines (other possibilities as well) — no

Planck 2018: Constraints on Inflation

Reconstructing curvature power spectrum

Our method

relative probabilities of spline models with different number of nodes.

At the end, reconstruct distribution of $P_{\mathcal{L}}(k)$ and $\Omega_{GW}(k)$ from the samples after marginalising over the reconstructions with different number of nodes

e.g.
$$\mathbb{E}[P_{\zeta,k}] = \frac{\sum_{n} \mathbb{E}[P_{\zeta,k}]}{\sum_{k}}$$

- Let the data determine node positions and amplitudes. Use Bayesian evidence for

Reconstructing curvature power spectrum

Example: Radiation domination

Match precisely with theoretical template

Braglia et al El Gammal et al

- \triangleright
- \triangleright Relatively unexplored: much work needed for their characterisation both from a theoretical and an experimental point of view

Observable offering new opportunities to distinguish among sources of SGWB

[Renzini, Contaldi]

Theoretical framework

Boltzmann approach [Contaldi, Bartolo et al] following [Dodelson]

Explore parallelism with physics of CMB anisotropies

Theoretical framework

Boltzmann approach [Contaldi, Bartolo et al] following [Dodelson]

Geometrical optics/short wavelength approx **GW:** Stream of collisionless gravitons following null geodesics through perturbed metric

$$ds^{2} = a^{2}(\eta) \left[-(1+2\Phi) d\eta^{2} + (1-2\Psi) \delta_{ij} dx^{i} dx^{j} \right]$$

Explore parallelism with physics of CMB anisotropies

Theoretical framework

Boltzmann approach [Contaldi, Bartolo et al] following [Dodelson]

Geometrical optics/short wavelength approx **GW:** Stream of collisionless gravitons following null geodesics through perturbed metric

$$ds^{2} = a^{2}(\eta) \left[-(1+2\Phi) d\eta^{2} + (1-2\Psi) \delta_{ij} dx^{i} dx^{j} \right]$$

Explore parallelism with physics of CMB anisotropies

 $\Delta(\eta, \vec{x}, q, \hat{n}) \rightarrow$ Direction of propagation $\hat{n} = \vec{p}/|\vec{p}|$ Magnitude $q = |\vec{p}|a$ of comoving momentum. Frequency $f = |\vec{p}|/(2\pi)$

Boltzmann equation

Schematically, the solution of Boltzmann eq for Γ is

Kinematic effects $\propto \, \hat{n} ec{v}$ contain precious info on SGWB properties

Effect of propagation

Kinematic anisotropies

Dominant source of anisotropy for Cosmological SGWB

Isotropic signal

Already observed in the CMB!

T = 2.728 K

Kinematic anisotropies

$\Delta T = 3.353 \text{ mK}$

Kinematic anisotropies

$eta = |ec{\mathbf{v}}|/c = 1.23 imes 10^{-3}$ $(264^{\circ}, 48^{\circ})$

Kinematic anisotropies of the SGWB with PTA

► For cosmo SGWB, we do expect a large **Doppler anisotropy** due to our relative motion wrt SGWB source rest frame

$$\left. \frac{\Delta \Omega_{\rm GW}}{\bar{\Omega}_{\rm GW}} \right|_{\rm Doppler} \simeq \mathcal{O}(10^{-3})$$

Especially interesting as independent probe of intensity and direction of our speed wrt SGWB rest frame

• Also sensitive to the frequency profile of $\Omega_{GW}(f)$.

Well-defined, ambitious target

Dipole tension

CMB and LSS estimates of β appear to be in tension, $\beta_{\rm LSS}\approx 2\beta_{\rm CMB}$

[See Peebles (2022) for a review]

COBE dipole

Extremely precise clocks sending pulses of light.

Cosmic lighthouse

Time delay at a certain period $z_a(t)$

Pulsar Timing Arrays and Gravitational Waves

Recently, several PTA collaborations found relatively strong evidence for a signal compatible with stochastic gravitational wave background.

News from PAS and Gravitational Waves

- significance

Kinematic anisotropies of the SGWB with PTA

First task: Develop the theory. Derive the PTA response functions to kinematic anisotropies.

Kinematic anisotropies of the SGWB with PTA

$$\Gamma_{ab}^{(0)} = \frac{1}{3} - \frac{y_{ab}}{6} + y_{ab} \ln y_{ab}$$

$$\Gamma_{ab}^{(1)} = \left(\frac{1}{12} + \frac{y_{ab}}{2} + \frac{y_{ab} \ln y_{ab}}{2(1 - y_{ab})}\right) \left[\hat{v} \cdot \hat{x}_a + \hat{v}_a\right]$$

Perspectives for Detecting Kinematic Anisotropies with PTA

► Take existing NANOGrav data, and model signal as power law

$$I(f) = \frac{A^2}{2f} \left(\frac{f}{f_{\star}}\right)^{3-\gamma}$$

Use NANOGrav likelihood and methods in ENTERPRISE packages.

niformly distributed ensapectives for Detecting Kinematic Anisotropies with PTA

$$\sqrt{TN_{\rm pair}}\frac{I}{\sigma_{\rm noise}^2}$$

 $N_{\rm pair} \sim N^2 \label{eq:Npair}$ In order to beat $\beta \sim 10^{-3}$ we need $N\sim 10^3$

Large number of pulsars even for future experiments in SKA.

Position deflected

Braginsky, V. B., N. S. Kardashev, A. G. Polnarev, and I. D. Novikov. Propagation of electromagnetic radiation in a random field of gravitational waves and space radio interferometry. No. IC--89/392. International Centre for Theoretical Physics, 1989

Book, Laura G., and Eanna E. Flanagan. "Astrometric effects of a stochastic gravitational wave background." Physical Review D—Particles, Fields, Gravitation, and Cosmology 83, no. 2 (2011): 024024.

 δn_i

Astrometry

C

Astrometry and SGWB

Precision astrometry with a large number of stars as a SGWB detector

[see Book, Flanagan (2010) for a review]

Gaia has $N \sim 10^9$ observed over 10 years with O(mas) precision. Already used to put constraints on low-frequency SGWB [Darling et al. 2018; Aoyama et al. 2021; Jaraba et al. (2023)]

Further applications of anisotropies

Non-Gaussianity

Tensor non-Gaussianity

Problem:

GWs from different directions tend to 'Gaussianize' the signal [Allen], [Adshead, Lim] [Bartolo et al.]

Phase decorrelations due to propagation in a perturbed universe

GW emitted from different patches of sky

[Bartolo et al.]

Applications of Anisotropies of the SGWB

Multi-Messenger Cosmology

Recall: we can have $\delta_{ m GW} \propto \zeta$

[Adshead et al, Dimastrogiovanni et al]

Anisotropies induced by propagation effects RD and MD universe

Quadrupolar anisotropies induced by large mixed non-Gaussianity $\langle \zeta hh \rangle$

 $P_{\gamma}^{\text{mod}}(\mathbf{x}, \mathbf{k}) = P_{\gamma}(k) \left[1 + \int \frac{d^3 q_L}{(2\pi)^3} e^{i\mathbf{q}_L \cdot \mathbf{x}} F_{\text{NL}}(\mathbf{q}_L, \mathbf{k}) \zeta(\mathbf{q}_L) \right]$

Applications of Anisotropies of the SGWB

[Adshead et al, Dimastrogiovanni et al]

Anisotropies induced by propagation effects RD and MD universe

Quadrupolar anisotropies induced by large mixed non-Gaussianity $\langle \zeta hh \rangle$

Then we can have $\langle \frac{\Delta T}{T} \delta_{\rm GW} \rangle \propto \mathcal{P}_{\zeta}$

Stochastic Backround of CMB temperature fluctuations

• OO: To do: In somewhere appropriate, mention that it is enough focus on the scale dependence of the bispectrum (via consistency relations) in the initial slow-roll era

Applications of Anisotropies of the SGWB

Anisotropies induced by propagation effects RD and MD universe

Quadrupolar anisotropies induced by large mixed non-Gaussianity $\langle \zeta hh \rangle$

Intensity $\begin{pmatrix} \langle h_{+}^{*}(f,\hat{n})h_{+}(f',\hat{n}')\rangle & \langle h_{+}^{*}(f,\hat{n})h_{\times}(f',\hat{n}')\rangle \\ \langle h_{\times}^{*}(f,\hat{n})h_{+}(f',\hat{n}')\rangle & \langle h_{\times}^{*}(f,\hat{n})h_{\times}(f',\hat{n}')\rangle \end{pmatrix} = \frac{1}{2}\delta_{D}(f-f')\frac{\delta^{(2)}(\hat{n}-\hat{n}')}{4\pi} \begin{pmatrix} I+Q & U+iV \\ U-iV & I-Q \end{pmatrix}$ **Circular polarization**

Astro backgrounds characterized by circular polarization Valbusa Dall'Armi et al Related with shot-noise Jenkins-Mairi, SatoPolito et al, Belgacem et al as well as propagation through cosmic structures [Cusin et al]

PTA blind to circular polarisation monopole — planar detector

- Cosmological sources e.g. GW from axion-gauge fields [Unal et al. 2023 + more]

SAME FOR LISA

Astro backgrounds characterized by circular polarization [Valbusa Dall'Armi et al] Cosmological sources e.g. GW from axion-gauge fields [Unal et al. 2023 + more]

PTA blind to circular polarisation monopole — planar detector

$$\Gamma_{ab}^{V} = \beta (n_{V} - 1) G_{ab}^{(1)} V$$

$$= -\left(\frac{1}{2} + \frac{y_{ab} \ln y_{ab}}{y_{ab}}\right) [\hat{v} \cdot (\hat{x})]$$

$$G_{ab}^{(1)} = -\left(\frac{1}{3} + \frac{y_{ab} \operatorname{Im} y_{ab}}{4(1 - y_{ab})}\right) \left[\hat{v} \cdot (\hat{x} + \frac{y_{ab} \operatorname{Im} y_{ab}}{4(1 - y_{ab})}\right]$$

Enhanced when pulsars locations orthogonal \vec{v}

PTA response begins at dipole

Forecasts: SKA era

Idealised scenario with $N \gg 100$ identical pulsars distributed uniformly We make several simplifying assumptions -> most optimistic estimate

[Keane et al. (2015), Janssen et al. (2015)]

Circular polarisation (for general anisotropies)

Near maximal polarisation may be detected with SKA ($N_{\rm psr}\gtrsim 10^3$) ... or with the help of astrometry [in prep]

Degree of circular polarisation

$$\epsilon_V = \frac{V}{I}$$

Unconstrained by current data

Conclusions

- I discussed three topics towards characterisation SGWB:
- Frequency dependence
- Anisotropies
- Circular polarization

Experimentally challenging to measure, but if successful will be very useful for deciding if Signal is primordial or not