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GW background from the early Universe

GWs from the early Universe have the potential to provide us with direct
information on early universe physics that is not accessible via
electromagnetic observations, possibly complementary to collider
experiments:

nature of first-order phase transitions (baryogenesis, BSM physics,
high-energy physics),
primordial origin of intergalactic magnetic field.



Probing the early Universe with GWs

Cosmological (pre-recombination) GW background

® Why background? Individual sources are not resoluble, superposition of
single events occurring in the whole Universe.
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® Phase transitions
® Ground-based detectors (LVK, ET, CE) frequencies are 10-1000 Hz
Peccei-Quinn, B-L, left-right symmetries ~107, 108 GeV.
® Space-based detectors (LISA) frequencies are 107°-1072 Hz
Electroweak phase transition ~ 100 GeV

® Pulsar Timing Array (PTA) frequencies are 107°-10" Hz
Quark confinement (QCD) phase transition ~ 100 MeV



First—order phase transition
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Hydrodynamics of first-order phase transitions
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Broken-phase bubbles are nucleated and expand

® Friction from particles yield a terminal velocity &,, of the bubbles

the bubble's acceleration

The bubble can run away when the friction is not enough to stop

® A fraction x of the vacuum energy will be transferred into kinetic

energy of the primordial fluid
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GWs from sound waves?

® Numerical simulations of the scalar + fluid system performed via an effective
friction term indicate sound-wave regime to dominate for weak/intermediate
phase transitions.

® Two scales are found that determine the GW spectrum: R, and AR.
(sound-shell thickness).
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GWs from sound waves: Sound Shell Model®

® The sound shell model assumes linear superposition of velocity fields from each
of the single bubbles and averages over nucleation locations and bubble lifetimes
(semi-analytical model), and the development of sound waves at the time of
collisions. It assumes stationary UETC Pp = Pr(k, t2 — t1).

Qaw(f) = 3Qaw K? (HxTsw) (HxR:) S(f Ry)

® HH19 predicts a steep k9 spectrum and linear growth with time and k=3 at
large frequencies, with an intermediate k between 1/Ry and 1/AR.

® GW predictions usually assume Tsw = min(7gp, H;l), with 7, ~ R«/VK being
the expected time to develop non-linearities. This is an interval in conformal
time Tsw = Tan — T« due to the conformal invariance of the fluid equations
(ARP & Midiri 2025).
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GWs from sound waves: Sound Shell Model revisited*

Extended Sound Shell model to an expanding Universe and omitted assumptions
that were not holding at small k, finding a new contribution previously omitted.

® HH19 model is shown to hold at k7gw ~ kR*/\/R > 1, so it holds around the
spectral peak when VK < 1.

® Recovered causal branch at small frequencies, proportional to k3 In2(1 + Tew Hx ).
® |inear growth becomes T = % < 1 when expansion is included
(Guo et al., 2021)
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GWs from sound waves: Higgsless simulations®

Difficulty on simulations is due to the different scales of the scalar field ¢ and
the fluid shell, so one can consider a nucleation history and set the pressure and
energy density by knowing the value of € and setting it during the simulation.

Effect of bubble collisions on GWs is subdominant when sound waves are
produced, so one can ignore the scalar field.

Nucleation history is produced from an exponential probability distribution
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Higgsless simulations of strong PTs®

a=0.5, v,=0.36, N=512, L/v,=20.0
i=575 _ i=1702

ARP, Stomberg et al., JHEP, arXiv:2409.03651.



Higgsless simulations (results)’

® Kinetic energy decay is observed in the simulations
® For weak and strong PTs, increasing resolution enhances the decay.

® Potential indication of the development of non-linearities (turbulence), around
30% of vortical motion at the end of the simulations for strong deflagrations.
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Higgsless simulations (results)®

® In the literature, the GW spectrum from sound waves is usually assumed to be
Qaw(f) = 30cw K? (Himsw) (HeR:) S(f R.)

® K =ka/(1+ a) is the fraction of kinetic (in the sound-wave regime!) to
radiation energy density
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Higgsless simulat

ions (results)?

® |n the literature, the GW spectrum from sound waves is usually assumed to be

Qaw(f) = 30cw K> T(7w) (H«R.) S(f R:)

® The linear growth, which only appears when expansion is neglected, is modified
when the decay of the source is significant (e.g., due to the development of

non-linearities).

® Extended model to proposed locally stationary UETC (also assumed in Dahl et
al., 2024 and found in Correia et al., 2025)

Qaw(f) = 3Qaw K (H«R:) S(f Ry)
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Higgsless simulations (results)*®
® |n the literature, the GW spectrum from sound waves is usually assumed to be

Qaw(f) = 3Qaw K2 T(7sw) (HeR
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Strong PTs in fluid+scalar simulations®®

® Extended model to proposed locally stationary UETC (also assumed in Dahl et
al., 2024 and found in Correia et al., 2025)

Qaw(f) = 3Qaw Kl o (HeR:) S(FR.)

a=0.67, v,=092 a=05, v,=044

0.06 006
s s
c g
T 005 T 005
Loo g £ oo4
S A ey 5
T 003 - T e < 003
@ @<
< <
F. 002 w002
2 001 2 o001

0.00 0.00

0 2000 4000 6000 8000 0 2000 4000 6000 8000 10000 12000 14000
ey iepd]

1
0Correia et al., arXiv:2505.17824 (2025).



Primordial magnetic fields

® Magnetic fields can either be produced at or present during
cosmological phase transitions.

® The magnetic fields are strongly coupled to the primordial plasma
and effectively produce vortical motion, inevitably leading to the
development of MHD turbulence.*

® Present magnetic fields can be amplified by primordial turbulence
12

via dynamo.
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Generation of primordial magnetic fields in phase transitions

® Charge separation around bubble walls produce seed magnetic fields.!3

® The Higgs field ® is naturally charged under the weak SU(2) and the
hypercharge U(1)y gauge fields. After the symmetry breaking the resulting
gauge field strength isl*

2sin0
Fuv = 0uAy — 0y Ay — i (9,010,0 — 5,010, 0)
g1

® Monopole-antimonopole pairs are produced during the electroweak phase
transition and will produce a magnetic dipole field that will survive after the pair
annihilates!®

® Parity-violating processes during the EWPT are predicted by SM extensions that
account for baryogenesis and can produce helical magnetic fields through
sphaleron decay or B4L anomalies.10

® Axion fields can amplify and produce magnetic field helicity.”
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MHD sources of GWs in the early Universe

® Magnetohydrodynamic (MHD) sources of GWs:

® Compressional motion (e.g. sound waves) generated from first-order
phase transitions.

® (M)HD turbulence from first-order phase transitions.

® Primordial magnetic fields.

® High-conductivity of the early universe leads to a high-coupling between
magnetic and velocity fields.

® Plasma dominated by radiation-like particles can be described by a

traceless stress-energy tensor and the fluid equations become conformal

invariant.1® T, =100 GeV, @ = 0.5, 8 = 10 H., v = 0.95, €y = 1
T T T

® Other sources of cosmological GWs: sound waves

(HL and SSM)

® Bubble collisions.

® Cosmic strings.

® Scalar-induced GWs
® |nflation.

18 10 10 10* 100 102 107!
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ARP, Midiri, Relativistic magnetohydrodynamics in the early Universe,
arXiv:2501.05732 (2025).



GWs from (M)HD turbulence

e Direct numerical simulations using the PENCIL CODE!? to
solve:

@ Relativistic MHD equations adapted for radiation-dominated
era (after electroweak symmetry is broken).
® Gravitational waves equation.

® In general, large-scale simulations are necessary to solve the
MHD nonlinearities (e.g., unequal-time correlators UETC and
non-Gaussianities, which require simplifying assumptions in
analytical studies).

® Current efforts to develop CosmoLattice-MHD are under
development (work with D. Figueroa, K. Marschall, A. Midiri).

19F’encil Code Collaboration, JOSS 6, 2807 (2020),
https://github.com/pencil-code/


https://github.com/pencil-code/

Contributions to the stress-energy tensor

1
T = (p+ p)UMU” + pg"” + 7" + FITFY, — Zg“”FMFM
® From magnetic fields:

Tj = —BiB; + 6;B2%/2

® From fluid motion:
Ty = (p+ p) 7 uju; + pdj;
® Ultrarelativistic EoS:
p=p/3
® Viscous stresses:
T = v(p + p)(uij + uj,i)

® 4-velocity U* = ~(1, u") * 4—current J* = (pe, J')

® 4—potential A = (¢, A) ® Faraday tensor
Fu = 0,A, — 9,A,



Conservation laws for MHD turbulence

In the limit of subrelativistic bulk flow:
Y~ 140”4 Ot

Relativistic MHD equations are reduced to?
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for a flat expanding universe with comoving and normalized

p = a'Pphys; p = a* Pphys, Bi = a2B;,phyS, u;, and conformal time t (dt = adt.).

2OA. Brandenburg, et al., Phys. Rev. D 54, 1291 (1996).
ARP, Midiri, Relativistic magnetohydrodynamics in the early Universe,
arXiv:2501.05732 (2025).



Qcw(k) and Qu(k)

Numerical results for decaying MHD turbulence®!

11523 k, = 2 x 100,y ~ 1072, o = 1

-~ ® Characteristic k scaling in the
- subinertial range for the GW

. spectrum.

® k2 expected at scales k < k. and

k® at k < H, according to the

Qawl(k)

“top-hat” model (Caprini et al.,
i62 ‘ 163 ‘ 164 — 2020).
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Early time evolution of the GW spectrum
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Numerical results for nonhelical decaying MHD turbulence®?
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Analytical model for GWs from decaying turbulence

® Assumption: magnetic or velocity field evolution dt. ~ 1/(u.k.) is
slow compared to the GW dynamics (dtgw ~ 1/k) at all k 2 u. k..

® \We can derive an analytical expression for nonhelical fields of the
envelope of the oscillations?® of Qaw (k).

EN® .5 Cla) k
In?[1 + H.0tge]  if kdtg, < 1,
In?[1 + (k/H.)"Y] if k6tan > 1.

® pp is the anisotropic stress spectrum and depends on spectral
shape, can be approximated for a von Kdrman spectrum as®*

K
1+ (2.2k*>

ZARP et al,, Phys. Rev. D 105, 123502 (2022).
24 ARP et al.. arXiv:2307.10744 (2023). [LISA CosWG] 2024

2157 —11/(3%2.15)
p(k/k.) = }




Numerical results for decaying HD vortical turbulence?®
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Primordial magnetic fields*

® Primordial magnetic fields would
evolve through the history of the

N 3 1076 L LISA. (e = 1)
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Primordial magnetic field constraints with PTA2®
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Primordial magnetic fields

constraints with PTA?”
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Conclusions

Velocity and magnetic fields in the early universe can significantly contribute to
the stochastic GW background (SGWB) via sound waves and (M)HD
turbulence.

The SGWB produced by non-linear motion requires, in general, performing
high-resolution numerical simulations, which can be done using the PENCIL
CODE.

Since the SGWB is a superposition of different sources, it is extremely
important to characterize the different sources, to be able to extract clean
information from the early universe physics.

The interplay between sound waves (acoustic motion) and the development of
turbulence is not well understood. It plays an important role on the relative
amplitude of both sources of GWs. On-going studies of phase transitions are
required to understand this issue.

LISA, PTA, and next-generation ground-based detectors can be used to probe
the origin of magnetic fields in the largest scales of our Universe, which is still
an open question in cosmology.

~-ray observations (Fermi LAT, CTA) can constrain intergalactic magnetic
fields, providing a potential multi-messenger approach to study primordial
magnetic fields.



Thank You!

alberto.roperpol@unige.ch

github.com/cosmoGW /cosmoGW
cosmology.unige.ch/users/alberto-roper-pol
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Numerical Simulations of Early Universe
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Cosmolattice School 2025 (IBS, Korea), Sept 22-26

This school offers a pedagogical introduction to lattice field theory techniques and their application to
the of fields in an Universe. Participants will also be introduced to
Cosmolattice, an open-access code designed for such simulations. The school will provide a
comprehensive guide to using Cosmolattice for modeling the non-linear dynamics of scalar and gauge
fields in cosmological contexts.

The school is aimed to anyone who would like to learn (or simply improve their knowledge on) how to
simulate in a lattice the dynamics of early Universe field theory scenarios. Topics covered include:

* Lattice field theory techniques: discretization schemes, lattice gauge techniques, and more

. for ions: Leapfrog, Verlet, Runge-Kutta, etc
« Overview of CosmoLattice: libraries, modularity, parallelization,
* Lattice si of ing fields in an

Scalar field dynamics with arbitrary potentials
U(1) gauge theories coupled to complex charged scalars
SU(2) gauge theories coupled to doublet charged scalars

« Modern applications to early Universe scenarios:
Preheating scenarios and onset of radiation domination
Production and evolution of gravitational waves
Dynamics of derivatively coupled Axion-like fields
Dynamics of non-minimally coupled scalar fields
Fluid dynamics and gravitational waves from turbulence
Evolution and experimental signatures of topological defects

Lecturers:

J. Baeza-Ballesteros ....... DESY, Zeuthen, Germany

D. G. Figueroa IFIC, Valencia, Spain

N. Loayza IFIC, Valencia, Spain

K. Marschall IFIC, Valencia, Spain

A. S. Midiri . . University of Geneva, Switzerland

T. Opferkuch SISSA, Trieste, Italy

A. Roper Pol ... ...... University of Geneva, Switzerland

B. A. Stefanek .................. IFIC, Valencia, Spain

F. Torrenti University of X , Spain

A. Urio . UPV/EHU, Bilbao, Spain



Pencil Code school and use

meeting

Oct 20-31, 2025
CERN

Pencil Code (http://pencil-code.nordita.org/) is a modular MPI public code to efficiently solve coupled
systems of partial differential equations in high-performance computing architectures using high-order
finite-difference schemes. Started in 2001 by A. Brandenburg and W. Dobler, its core application initially
focused on magnetohydrodynamics (MHD) for solar physics. Since then, it has been continuously under
development by a total of 90 contributors covering a broad range of applications.

In particular, it has been used for studies of early universe physics including the evolution and formation
of primordial magnetic fields and chiral MHD; the production of gravitational waves and propagation of

gravitational waves in modified gravity, and inflation.

Lecturers:

1st Pencil Code school on early Universe physics and gravitational waves (Oct 20-24)

The Pencil Code school on early Universe physics and gravitational waves will take place on October 20-

24 as part of a two-week CERN TH institute.

The school targets early-career and senior researchers that are interested in learning and developing

numerical skills applied to early Universe physics using Pencil Code.
The lectures will cover numerical aspects:

« Introduction to Pencil Code
« Finite-difference schemes for partial differential equations
 Post-processing of data with IDL and Python

« GPU acceleration of Pencil Code

as well as applications to particular physics cases with hands-on exercises on:

« Magnetohydrodynamics of the early Universe
« Generation and evolution of primordial magnetic fields
« Chiral magnetohydrodynamics

« First-order phase transitions

« Gravitational wave production

* Axion inflation

Axel Brandenburg (Nordita)

Philippe Bourdin (University of Graz)

Simon Candelaresi (University of Augsburg)
Deepen Garg (University of Bonn)

Frederick Gent (Aalto University & Nordita)
Matthias Rheinhardt (Aalto University)
Alberto Roper Pol (University of Geneva)
Isak Stomberg (IFIC, Valencia)

21st Pencil Code user meeting PCUM2025 (Oct 27-31)
‘The Pencil Code user meeting will take place on October 27-31 as part of a two-week CERN TH institute.

Registration for the Pencil Code user meeting is open and will close on September 28th

Registration is open and will close on July.31st. The school is limited to a maximum of 30 participants.

Participants of the school are encouraged to also participate in the user meeting (Oct 27-31) and need

to register separately.
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