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Introduction
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Symmetries are restored at
high temperatures/early times

(p) :G—->H

Spontaneous breaking while the
Universe expands and cools down



Key to address
open questions:
baryogenesis

Aftermath directly Evidence for new
observable in GWs fundamental physics
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Phase transitions source GWs
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Bubble collision,
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Phase transitions source GWs

Topology of the vacuum: |

/ | Formation of defects and
w annihilation 1 I

Non-trivial interplay!

S * —
\ Strength: - |
4 | Bubble collision,
hydrodynamics
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N UCIGatiOn theory Coleman 1977 (PRD)

Callan, Coleman 1977 (PRD)
Linde 1983 (NPB)

* Assume thermal fluctuations in V(o)
homogeneous spacetime:

Px,7t) =(r), r=|x| T'>T,

* Tunneling rate per unit volume
given by O(3) action 5;/T
False
vacuum

}/V ~ T4 €XP(—Sg/T) naing "

trajectory




Nucleation theory

e Assume thermal fluctuations in
homogeneous spacetime:

P(x,7) = P(r), r=|Xx|

* Tunneling rate per unit volume
given by O(3) action $5/T

vy ~ T* exp(=S;/T)

Simone Blasi - GW BSM 4

Coleman 1977 (PRD)
Callan, Coleman 1977 (PRD)
Linde 1983 (NPB)

H=0



What about impurities?

Figure: Bubble chamber
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“If monopole (or vortex) solutions exist for a metastable or
false vacuum, a finite density of monopoles (or vortices) can
act as impurity sites that trigger inhomogeneous nucleation

Qd decay of the false vacuum.” /
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“Now one has to ask the following question: Is the early
universe really sufficiently pure in order for supercooling
to take place? The aim of this paper is to show that in
most cases the early universe is very pure. [...] In this paper

Qd decay of the false vacuum.” /

Edward Witten*
Institute for Advanced Study, Princeton, New Jersey 08540
(Received 9 April 1984)

“In particle physics it is often assumed that phase
transitions are nucleated by thermal fluctuations. In
practice, [...] except in very pure, homogeneous samples,
phase transitions are often nucleated by various forms of
\ impurities and inhomogeneities of nonthermal origin.”

Cosmic separation of phases

Qve consider ordinary particles as impurities.” /

“What if the transition was nucleated by impurities? In
this case the mean spacing between bubbles has
nothing to do with free energies of nucleation and is
simply the spacing between the relevant impurities. ”

/




The nature of impurities

* Compact objects and gravitational effects

(Coleman-de Luccia, PRD, 1980)

true vacuum py

false vacuum

catalyzing object

Fig. from Oshita, Yamada, Hiscock, PRD, 1987;

Yamaguchi [1808.01382], PLB Burda, Gregory, Moss
. [1501.04937], PRL
Jinno, Kume, Yamada

[2310.06901], PLB Strumia [2209.05504]
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https://arxiv.org/abs/2209.05504

The nature of impurities

* Compact objects and gravitational effects

(Coleman-de Luccia, PRD, 1980)

false vacuum

true vacuum py

catalyzing object

Fig. from Oshita, Yamada, Hiscock, PRD, 1987;

Yamaguchi [1808.01382], PLB Burda, Gregory, Moss
. [1501.04937], PRL
Jinno, Kume, Yamada

[2310.06901], PLB Strumia [2209.05504]
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* Primordial density fluctuations

Fig. from Jinno, Konstandin, Rubira,
van de Vis, [2108.11947], JCAP


https://arxiv.org/abs/2209.05504
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The nature of impurities

* Topological defects

Monopoles E Aren
TEV 27T
EF(R) = R3 + Ano’ R? 4

I
V(h) — V(1) E I
I
I
Etvp |

L - _ [ _ _ _____ \

Mm I I

I I

I I

E——— h | , | R
/-"‘"'----- Ry RCZRC Riub \ Revp
—€/A

Figs. from Agrawal, Nee [2202.11102] SciPost Phys.



* Topological defects

Domain walls

Fig. from Agrawal, SB, Mariotti, Nee
[2312.06749] JHEP

The nature of impurities

Simone Blasi - GW BSM 4

Cosmic strings

Fig. from Lee et al.,
[1310.3005], PRD

Yajnik, PRD, 1986

Fig. from SB, Mariotti,
[2405.08060] SciPost Phys.
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The nature of impurities

* Topological defects
Cosmic strings

Fig. from Lee et al.,
[1310.3005], PRD

Yajnik, PRD, 1986

Domain walls

Fig. from SB, Mariotti,
[2405.08060] SciPost Phys.

lllllllllllllllllllllllllllllllllllllllllllll

- - . Can be realized in
Fig. from Agrawal, SB, Mariotti, Nee _ ' :
[2312.06749] JHEP . superfluid Hel

lllllllllllllllllllllllllllllllllllllllllllll




Topological classification

Defect Dimension Homotopy Mass
Domain walls 2 mo( A ) oL’
Cosmic strings 1 (M) ul
Z, — nothing
+vg
| v(s) | Y
X
\ | /\ -
5(z) ‘

\/s

+vg

DWex—y

Simone Blasi - GW BSM 4

U(1) - nothing

/ Fig. from Ringeval 2010
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EWPT with a singlet

» SM + scalar singlet with Z, : § — —§

1 1
V=——u"—cTHh>+—1h*
2(/4 W) A

| B |
—(m~ — . THS? + —n S*
2( 1) K

1
+—x h%S?
2

*Z 5 breaking terms destabilize the wall
network and are set to zero in the following

See e.g. Espinosa, Gripaios, Konstandin, Riva [1110.2876] JCAP
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EWPT with a singlet

» SM + scalar singlet with Z, : § - —§ q Two-step transition
I 1 n L
V=——(u"—c¢T>Hh*+—1h* *

2(/4 cy1™) 1 Trw (2)
1 1

__(m2 . CSTZ)SZ + —7 S4 (1)
2 4 —————o——
1

+5K’ h2S2 h

*Z 5 breaking terms destabilize the wall
network and are set to zero in the following

See e.g. Espinosa, Gripaios, Konstandin, Riva [1110.2876] JCAP
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EWPT with a singlet

» SM + scalar singlet with Z, : § — —§ q Two-step transition
1 1 W Tn
V=——u" —c,THh*> +—Ah* +
R LR Tow (2)
1 1
(M= eT)S? +—p S (1)
2 4 e
1
+—k h%S? h
2
*Z 5 breaking terms destabilize the wall ®

network and are set to zero in the following

See e.g. Espinosa, Gripaios, Konstandin, Riva [1110.2876] JCAP



EWPT with a singlet

 Competition between homogenous

and seeded nucleation for 2nd step:

’/
’/
4

P -
-
~-~o

;’ + 0,
Hubble ’
volume

hom. !

seeded ‘

Simone Blasi - GW BSM 4

0,0) = (0, % v,) /0, £v) > (,0)\

—1—

AN n

tiphe

At T **? bubbles may nucleate on the walls



EWPT with a singlet

 Competition between homogenous

and seeded nucleation for 2nd step:

’/
,/
4

P -
-
~-~o

Hubble
volume

hom. !

S |
seeded ‘

Simone Blasi - GW BSM 4

(0,0) = (0, £ v) /0, £v) = 1,0\

, 4
‘ { .

tiphe

At T **? bubbles may nucleate on the walls

- Define nucleation rate per unit surface
- Stricter nucleation condition (only on
sub manifold)

Lazarides, Shafi, Kibble 1982, PRD
Perkins, Vilenkin 1992, PRD
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EWPT with a singlet ‘/

O(2) Seeded bubble

Only O(2) symmetry Dommain wall
1. Solving coupled system of PDEs 2. Thin wall approximation 3. Kaluza-Klein decomposition
« “Exact” o Limited validity « Quantitative results
e Physical picture? e Intuitive picture o Still intuitive
« Which initial conditions for e Simple calculation e I|nitial conditions for num.
the algorithm? algorithms and cross-checks

Agrawal, SB, Mariotti, Nee [2312.06749] JHEP SB, Mariotti [2203.16450] PRL
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1. Equations of motion

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

\)
. , +V,
0 10 0 1%
P 10 Pp_
or: r or 07z%2  O0¢ .
<

S(OO9 Z) — SDW (Z)9 S(l", + OO) = I Vsa

h(o0,2) = h(p, £ ) =
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2. Thin wall approximation

dr . 1 ,

l \)
Z >

(Similar to nucleating a hole
in string-wall networks)
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3. Kaluza-Klein decomposition

 Expand the fields around the domain wall
background:

h= Y (%, )42 3
k
X, =1,X,Y
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3. Kaluza-Klein decomposition

* Expand the fields around the domain wall * Eigenspectrum of excitations:
background: e |
A Singlet Higgs \U/ |
s=sm@+ Ta(s)a@

=
1
=
=
N
=
=
N——
S
=
Py
A\
)
3d spectrum

See also “Solitons and instantons”, Rajaraman 1982
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3. Kaluza-Klein decomposition

 Integrate along z to obtain 3d action and » Eigenspectrum of excitations:
integrate out continuum excitations: e |
x”\ /’__
. 1 , 1 , " A Singlet Higgs \U/ |
S, = |d°x —(0 hy)”+—(0,5,)" — Vi, (hy, s

3d spectrum

See also “Solitons and instantons”, Rajaraman 1982
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3. Kaluza-Klein decomposition

 Integrate along z to obtain 3d action and » Eigenspectrum of excitations:
integrate out continuum excitations: e |
\\ Yy
. 1 , 1 , " A Singlet Higgs \U/
S, = |d°x —(0 hy)”+—(0,5,)" — Vi, (hy, s

Seeded tunneling as homogeneous
problem in lower dimension!

| A

Tunneling trajectory can be obtained with wo
standard tools CosmoTransitions

3d spectrum

See also “Solitons and instantons”, Rajaraman 1982
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EWPT with a singlet

 Comparison of the various methods:

- i k=13, n=1.6, mg=250 GeV 2 " , "
i ' i approx. . L'hi
150+ E (high T approx.) hom. nucl. 111 wa
= : seeded nucl.
2 100|
S 3d EFT
5 % — 1/myx
A 50} g 1 /M
| no KK 3
N S e Al |
0.7 0.8 1.

Agrawal, SB, Mariotti, Nee
T/T. 2312.06749] JHEP
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Pheno implications

mg = 250 GeV

 Seeded transition is faster in all the
two—step parameter space

* New parameter space becomes
viable thanks to seeded tunneling

Wrong vacuum

1.2 1.3 1.4 1.5 1.6

portal coupling s



Pheno implications

« Homogenous PT: bubble size and
strength are strongly correlated

 Seeded PT: pheno controlled by the
of defects per Hubble volume &

1. Sparse networks & ~ 1: size determined
by average distance between defects

2. Dense networks & > 1: bubble size
determined by nucleation rate

Q:m 101
n
D
N
o 1072
O
O
-
an
10~°

Simone Blasi - GW BSM 4

- mg = 200 GeV

n=1

Long lasting
sound waves

£ =10°

. Seeded PT: )

hAOR = 1077

A10—17

102

Latent heat «
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EWPT with a singlet

108 -\\\SNR— 100 n=1, mg=200GeV
30
% N 10
z 1070 LISA
S
Q —12
< 10
E Seeded PT: * /%
A= I
% 10— 14 /
—
§ 10—16
10718 L N Y
107° 1074 1077 10~

Peak frequency |[Hz]
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H iggS|ess-hyd ro Si m u Iation Fig. from SB, Jinno, Konstandin, Rubira,

Stomberg [2302.06952] JCAP

 Domain wall network mimicked by Ising model  Spectrum shifted to IR with enhanced amplitude

1.0 =
J 1075 - y
0.8
| Jomogeneous
- (ZH)
:
0.4 - . —
iSeeded: f — 1/éH. |
| ;
| possible differences in |

) ) ) 101 109 101
xz/L q/B
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Tunneling from real-time simulations

* Langevin approach to mimic the thermal bath via fluctuation-dissipation:

3 — V)i t) + 5

€@ O 1) = Q0% (& —2)o(t —t') Q= 2nkpT

Initialize the system in the false vacuum,
evolve In time, and wait for nucleation
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Tunneling from real-time simulations

* Applying this method for the first time to seeded nucleationind =2 + 1:

0

fil 100

Tow | (2)
(1)

300

400

500
0 50 100

- 14

- 12

40

400

SB, Ekstedt, Hallfors,
Rummukainen, in prep.

35 -

30 -

25

- —2 = 20 -

15 ~

10 -

— Aexp(—x/I')

0 1000 2000 3000 4000 5000 6000
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Tunneling from real-time simulations

* Extracting the continuum limit with lattice counter-terms (1-loop):

1504 ™ A MCMC: ¢2
m Langevin: ¢2
/ 11.94 B o
~ logalu A MCMC: ¢2+CT
11.8 A - 0 Langevin: ¢2+CT
(a) (b) _11.7- =
(.\g.u
~ 11.6 A
11.5 - -
11.4 - s - .
(c) (d) 11.3 -
7

0.2 0.4 0.6 0.8 1.0
Fig. from Moore, Rummukainen,
Tranberg [hep-lat/0103036], JHEP
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Theory prediction: homogenous

 Thermal nucleation rate per unit volume in d + 1:
V(o)

/ ' —1/2
Y (S[¢b])d/2 det’ (=V2 4+ V" (¢1,)) —(Slgu]—Slor)
stat oI det (—=V2 + V" (¢pp))

1 ne 0
Adyn = o0 (\/M " 2)

./,

N

See e.g. Ekstedt, Gould, Hirvonen
[2308.15652], JHEP
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Theory prediction: homogenous

* |n general the determinant involves a product of spherical harmonics:

det (—V2 + W (r)) [

det (—=V2 + W (o))

' det (=V7+W(r))

=z det (—=V?# + W(0))

—1 — 2
V%:aQId o W Ci )

T T

e Need to account for zero modes and renormalization

See e.g. Ekstedt, Gould, Hirvonen
[2308.15652], JHEP
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Theory prediction: seeded

* Toy model of thermal seeded tunnelingind =2 + 1 :

- 14

- 12

100

* Nucleation rate per unit wall length estimated as:

_B T 200
' = OpwE€ /

300

400 400

500
0 50 100
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Theory prediction: seeded

* Toy model of thermal seeded tunnelingind =2 + 1 :

- 14

- 12

100

* Nucleation rate per unit wall length estimated as:

_B T 200
' = OpwE€ /

300

400 400

500
0 50 100
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Theory prediction: seeded

* Toy model of thermal seeded tunnelingind =2 + 1 :

- 14

- 12

100

* Nucleation rate per unit wall length estimated as:

_BT 200
' = e B/

300

 How to properly calculate the rate taking into account
the fluctuation determinant?

400 400

500

0 50 100
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Theory prediction: seeded

 Considerthe d =1 + 1 dimensionally-reduced theory on the domain wall

S1411P0) = /dZdt {%(%%)2 — ‘N/(%)}

~ 1 1 1
V(o) = 50765 — 5readt + ;1

The 1+1 theory describes homogenous
nucleation: we can apply standard results!

W (x) = h(r)oo(z, 1)
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Theory prediction: seeded

e Determinant around the bounce solution as™:

—1/2

det'| d/2—1 10V d/2 . -
der| ((2@ P 50 (abb(O))) d=1)

6 ~ b + 6K (d/2 = 1,mpr) (mp /)"
l 1

/! 2 _
—u +mpu=0 — —e "\ /7/2
m

*Obtained from [ = 1 in d = 3 result in Ekstedt,
Gould, Hirvonen [2308.15652], JHEP h“(x) — h(r)gbo(z, t)
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Theory prediction: seeded

 Dynamical factor similarly obtained as

A _ i |)\ ‘ | 772 T damping <
Wn T on -4

Negative eigenvalue for the
growth of critical bubble

(—82 4 55 + V”(qbb)) f(r)=A_f(r)

r
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Real-time simulation vs theory

* Theory prediction:

(preliminary)
LT ~ 1072 T T T T — T N
—B/T | C++ L =100 n=1 |
Opw - € 105 ¢ .
/é)\ —n=01] :
[ - o
7 1000} g
- 5 E
100t N, = N, = 200, a = 0.5, dt/a® = 0.00 o
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What about other defects?

SB, Mariotti [2405.08060] SciPost Phys.
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QCD axion strings

T a(f) : 0 - 21
fa » Strings form at PQ phase transition
» Strings connected by axion
QCD domain walls
o String—wall network collapses S~ m-}
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QCD axion strings

T a(@) : 0 - 2x
fa » Strings form at PQ phase transition
0707
» Strings connected by axion
QCD domain walls
o String—wall network collapses S~ m-}
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QCD axion strings

* Potential for PQ field * Global string solution

o =pei“ a(0) : 0 = 2r

Vpo(®)
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QCD axion strings

* Consider the minimal KSVZ axion model with a Higgs portal:

YV =Veq(|®]) + Vew ([ H];T) + & (‘@2 3) (W‘Q ”2>
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QCD axion strings

* Consider the minimal KSVZ axion model with a Higgs portal:

YV =Veq(|®]) + Vew ([ H];T) + & (‘@2 3) (W‘Q ”2>
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QCD axion strings

* Consider the minimal KSVZ axion model with a Higgs portal:

How do axion strings affect
electroweak symmetry breaking?

Fig. from 2308.01334
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EFT with heavy defects

* |Large hierarchy between the mass of the Higgs and the PQ radial mode

* Physics captured by electroweak scale EFT, SM + axion (or ALP):

1K

Serr|h] = / d*x {%(c‘%h)Q — Vew(h) — 5 . (0,0)?h? + W%C(€)5(2) (r — e)hz}
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EFT with heavy defects

* |Large hierarchy between the mass of the Higgs and the PQ radial mode

* Physics captured by electroweak scale EFT, SM + axion (or ALP):

1K

Serr|h] = / d*x {%(c‘%h)Q — Vaw (h) (0,0)%h% + 71~C(€)5@ (1 — e)hz}

2 n

¢ O-potential imposes UV
matching condition:

el (€) = —0(6)%h(e)

e~ 1/m,



Two possibilities

SM + PQ First order EWPT + PQ

Axion strings can form a Higgs core at 1" > 10% GeV Axion strings can trigger bubble nucleation

N\ a®: 0> 27
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FOPT + PQ

e Consider first order EWPT with false vacuum B metastable at 7 = ()

Vew (h; T)
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FOPT + PQ

e Consider first order EWPT with false vacuum B metastable at 7 = ()

Vew (h; T)

Assume too slow hom. —

nucleation for simplicity B TTTreeeaall h

1 0 mj, 1
Vew (h: T) = =2 (i — cnT?) h* + 5 —2h® + B!
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FOPT + PQ

®@B- O A

— Ehom

Critical bubble
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stringB

®@B- O A

— Ehom (K — O)

Critical bubble
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Critical bubble
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string B

\String B — \String A
< EhOIIl (K/f/] ~ Cl‘it.)

Critical bubble
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At

Expansion of macroscopic
cylindrical bubble wall

See also Yajnik, PRD (1986)
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FOPT + PQ

 Comparison of homogenous nucleation probability * Critical bubble:
vs string-seeded tunneling:
200
| Too slow\
| Hom.
, 150
ﬁ‘ i
:“ | (Seeded\ Nucleation
i 100: Linear . . /
8}/ —————— . PDREs | my,=251eV ----- g -~-------~-
50'_ 0=—1.6
| — 1+1 T./T, = 0.45
- J N Y,
1077 10~ 107"
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DFSZ QCD axion strings

 Consider the DFSZ model where two Higgs doublets share a PQ charge:

L = ‘8MS‘2 -+ ‘DMHHQ -+ ‘DMHQ‘Q — VS(‘SD — VEW(H].) HQ) — (KSQHIHQ -+ h.C.)

N\

U(1) symmetry with
massless A"

How does a non-zero k affect EWSB?

SB, Y. Hamada, in prep.
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DFSZ QCD axion strings

 Consider a toy model with PQ scalar + complex Higgs, in the string background:

L = %(Ouh)Q | 1h2(8u¢)2 — Vew(h) 1 ;/ipz(r)hz cos (20 + 2¢)

2
n | :
PQ: S =— %0 Vew (h)
= \/5/)(7“)6
1
Higgs: = \ﬁhe ¢
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DFSZ QCD axion strings

« Consider k < | and perturb around the homogeneous, spherical, solution:

h=h(R)+&kdh, ¢=+KdP

 Decoupled linear equations for the fluctuations with a source term:

oh + Vi (R(R))6h = h(R)p*(r) cos(20 + 26) (Higgs equation)

5’u [hQ(R)@“&b} — — hQ(R),OZ(T) sin (26 %) (Goldstone equation)
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DFSZ QCD axion strings

e Solution for 0h from spectral decomposition: oh

e Perturbation dominated by £ = 2 and m = 2:

h ~ Yo (6, 6) Ran(R) + "0 cos(2)

my,
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DFSZ QCD axion strings

» Seeded nucleation actually disfavored for all k # (0
Nucleation far
from the string

-® 00

W k70 k70 2 2p3
R ‘AE‘ Estring, _Esph c kfav R

Eﬁ;;é()

string, c

sph C
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DFSZ QCD axion strings

» Seeded nucleation actually disfavored for all k # (0

 However we still need to account for KSVZ-type interactions

V. — (mSQHjHQ n h.c.) + ks SI2Hy|? + kog|S|2| Hal?
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Summary and outlook

* The presence of impurities in the early Universe can strongly affect the way a phase
transition proceeds

« The xSM with Z, symmetry is arguably the simplest (and complete) example for an
EWPT seeded by domain walls

* Other defects can exist at the time of the EWPT: dedicated study of QCD axion strings
iIn KSVZ model with Higgs portal, and extension to DFSZ

* Pheno aspects of seeded phase transitions: percolation, slow transitions, expansion
of non—spherical bubbles, features in the GW signal®?

 New opportunities to study tunneling in quantum/thermal field theory
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« The xSM with Z, symmetry is arguably the simplest (and complete) example for an
EWPT seeded by domain walls

* Other defects can exist at the time of the EWPT: dedicated study of QCD axion strings
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 New opportunities to study tunneling in quantum/thermal field theory

Thank you!



