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Introduction

Symmetries are restored at 
high temperatures/early times

T

TRH

T < Tc
Spontaneous breaking while the 
Universe expands and cools down

ϕ

ϕ

⟨ϕ⟩ : G → H
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Key to address       
open questions:

baryogenesis

Aftermath directly 
observable in GWs

Evidence for new 
fundamental physics

   Cosmological phase transitions ⇒



Phase transitions source GWs

Phase transition at  
Tc
⟨ϕ⟩ : G → H

Topology of the vacuum: 

Formation of defects and 

annihilation

Strength:


Bubble collision, 
hydrodynamics
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Phase transitions source GWs

Phase transition at  
Tc
⟨ϕ⟩ : G → H Non-trivial interplay!

Topology of the vacuum: 

Formation of defects and 

annihilation

Strength:


Bubble collision, 
hydrodynamics
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Pulsar timing arrays

 NANOGrav

 PPTA

 EPTA

◦ IPTA

◦ SKA

Space-based interferometers

◦ DECIGO

◦ BBO

◦ LISA

Ground-based interferometers

 aLIGO + aVirgo (observing run 2)

◦ aLIGO (design)

◦ aLIGO + aVirgo (design)

◦ aLIGO + aVirgo + KAGRA (design)

◦ Cosmic Explorer

◦ Einstein Telescope
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Figure 1. Top: Strain noise spectra. Bottom: PLISCs and GW signal for BP #14. See text.
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Nucleation theory Coleman 1977 (PRD) 
Callan, Coleman 1977 (PRD) 
Linde 1983 (NPB)

ϕ

V(ϕ)

T ≫ Tc

T < Tc

T > Tc

Tunneling 
trajectory

False 
vacuum

• Assume thermal fluctuations in 
homogeneous spacetime:





• Tunneling rate per unit volume 
given by O(3) action 


ϕ(x, τ) = ϕ(r), r = |x |

S3/T

γV ∼ T 4 exp(−S3/T)
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Nucleation theory Coleman 1977 (PRD) 
Callan, Coleman 1977 (PRD) 
Linde 1983 (NPB)

ϕ ≠ 0

ϕ = 0• Assume thermal fluctuations in 
homogeneous spacetime:





• Tunneling rate per unit volume 
given by O(3) action 


ϕ(x, τ) = ϕ(r), r = |x |

S3/T

γV ∼ T 4 exp(−S3/T)
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What about impurities?

Figure: Bubble chamber



“If monopole (or vortex) solutions exist for a metastable or 
false vacuum, a finite density of monopoles (or vortices) can 
act as impurity sites that trigger inhomogeneous nucleation 
and decay of the false vacuum.”



“If monopole (or vortex) solutions exist for a metastable or 
false vacuum, a finite density of monopoles (or vortices) can 
act as impurity sites that trigger inhomogeneous nucleation 
and decay of the false vacuum.”

“Now one has to ask the following question: Is the early 
universe really sufficiently pure in order for supercooling 
to take place? The aim of this paper is to show that in 
most cases the early universe is very pure. […] In this paper 
we consider ordinary particles as impurities.”



“If monopole (or vortex) solutions exist for a metastable or 
false vacuum, a finite density of monopoles (or vortices) can 
act as impurity sites that trigger inhomogeneous nucleation 
and decay of the false vacuum.”

“Now one has to ask the following question: Is the early 
universe really sufficiently pure in order for supercooling 
to take place? The aim of this paper is to show that in 
most cases the early universe is very pure. […] In this paper 
we consider ordinary particles as impurities.”

“In particle physics it is often assumed that phase 
transitions are nucleated by thermal fluctuations. In 
practice, […] except in very pure, homogeneous samples, 
phase transitions are often nucleated by various forms of 
impurities and inhomogeneities of nonthermal origin.”

“What if the transition was nucleated by impurities? In 
this case the mean spacing between bubbles has 
nothing to do with free energies of nucleation and is 
simply the spacing between the relevant impurities. ”



• Compact objects and gravitational effects  

The nature of impurities

(Coleman-de Luccia, PRD, 1980)

Fig. from Oshita, Yamada, 
Yamaguchi [1808.01382], PLB

Jinno, Kume, Yamada 
[2310.06901], PLB

Hiscock, PRD, 1987;

Burda, Gregory, Moss 
[1501.04937], PRL

Strumia [2209.05504]
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• Compact objects and gravitational effects  • Primordial density fluctuations

Fig. from Jinno, Konstandin, Rubira, 
van de Vis, [2108.11947], JCAP

Fig. from Oshita, Yamada, 
Yamaguchi [1808.01382], PLB

The nature of impurities

Jinno, Kume, Yamada 
[2310.06901], PLB

Hiscock, PRD, 1987;

Burda, Gregory, Moss 
[1501.04937], PRL


(Coleman-de Luccia, PRD, 1980)

Strumia [2209.05504]
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• Topological defects 

The nature of impurities

Monopoles

Figs. from Agrawal, Nee [2202.11102] SciPost Phys.

SciPost Physics Submission

Figure 2: Energy of the metastable monopole (blue) and false vacuum bubble (red)
as a function of radius in the thin-wall limit. We neglect di�erences in the tension
of the two bubbles and set ‡ = ‡Õ. The plot is illustrative of the shape of profiles in
the thin-wall limit.

at a small radius in the monopole case due to the additional term 2fi/(g2R), as shown in
figure 2. The monopole can thus be thought of as as a sub-critical bubble of true vacuum
which is stabilised by the magnetic self-energy in the thin-wall limit.2 Therefore, monopoles
do not collapse to zero size, whereas sub-critical false vacuum bubbles do.

Choosing parameters such that Rm = Rc (i.e. if g is su�ciently small) leads to a monopole
which is classically unstable and will spontaneously expand as was the case discussed in
ref.’s [15–17]. Even if Rm < Rc the monopole can tunnel to a monopole solution of (super)-
critical size (R Ø Rc) at which point it will spontaneously expand. In contrast, the false
vacuum case can be thought of as tunnelling from the R = 0 homogeneous false vacuum to
a bubble of size R Ø RÕ

c. It is therefore a natural expectation that the bounce action for
monopole decay should be smaller than the false-vacuum bounce.

The monopole bounce action in the thin-wall approximation was studied in ref. [18], their
result was:

Bmb

Bfvb
= 32

Ô
2

105fi

3
1 ≠ Rm

Rmb

45/2
I

3
Rm

Rmb

4
, (17)

where I is an O(1) function. Here Rmb is the radius of the bubble after tunnelling, given by
Em(Rmb) = Em(Rm) as required by energy conservation. This expression makes explicit the
classical instability as Rm æ Rmb and the barrier in Em(R) disappears.

2.4 Thin wall limitations
The thin wall limit only gives a good approximation to the true monopole solution in a limited
set of circumstances. In general, the field profiles hm, um have a thick-walled profile which is

2
Note that global monopoles are also stable against collapse – in this case the outward pressure is provided

by the gradient energy of the scalar field profile, which is fixed to vanish at the origin due to topology. However,

there is no thin-wall limit for global monopoles.

8
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construction h = 0 is the true minimum of the potential V , so in some neighbourhood around
the centre of the monopole the scalar field is in the true vacuum region of the potential. In
this way, the monopole profile resembles the profile of a bubble nucleated in false vacuum
decay.

When these assumptions hold there are now two separate processes that contribute to
the decay of the false vacuum. The formalism described in section 2.1 is still valid when
considering bubbles nucleated far from the core of a monopole, but around the core of a
monopole the rate of bubble nucleation can be exponentially enhanced, as the interior of
the monopole contains a region of true vacuum. If this interior region of the monopole is
of a critical size, then the monopole can become classically unstable and will spontaneously
expand – even if the false vacuum decay process is exponentially suppressed. If the monopole
is smaller than the critical size, it can still decay via a tunnelling process where the monopole
tunnels to a larger monopole before spontaneously expanding.

Similar to the false vacuum tunnelling process, the rate for this process will be dictated by
bounce solutions to the Euclidean field equations. The exponent suppressing the monopole
decay, Bmb, is the Euclidean action evaluated on these solutions. The decay rate of a single
monopole is

�single≠monopole = AÕe≠Bmb . (14)

The contribution of the monopole channel to the false vacuum decay rate (per unit volume)
in this case will then be given by

�mb = nmAÕe≠Bmb , (15)

where nm is the monopole number density. In general the pre-factors A in equation (5)
and AÕ may be di�erent, but we make the approximation that A ≥ AÕ ≥ v, which only
a�ects the bounce action logarithmically. Due to the exponential dependence on Bfvb, Bmb
in equations (5) and (15) if Bmb < Bfvb the monopole-catalysed decay can still dominate the
false vacuum process even if nm is very small.

2.3 Metastable monopoles in the thin wall limit
In this section we discuss the behaviour of metastable monopoles in the thin wall limit [18]
and compare this to the false vacuum tunnelling process. This amounts to making a similar
approximation to the one in equation (10), where the scalar field interpolates between the
two vacua in a small region around the radius R. The detailed form of the profile um is not
important at leading order, and it is assumed that um varies with the same characteristic
radius as the scalar field [18]. In this limit the energy of the monopole can be written solely
as a function of the radius R as

Em(R) = ≠4fi‘v4

3 R3 + 4fi‡ÕR2 + 2fi

g2R
, (16)

where ‡Õ is the surface tension of the monopole. ‡Õ is in general di�erent from the surface
tension ‡ defined in equation (11) due to contributions from the gauge field profile, but
these become less important at larger R values. For small ‘ the energy has a minimum at
Rm ƒ

!
4g2‡Õ"≠1/3 and a maximum at Rc ƒ 2‡Õ/(‘v4). Comparing this with the energy (10) of

a bubble nucleated in a false vacuum tunnelling process we see there is a minimum generated

7
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Figure 1: The scalar potential for the metastable monopole model, given a repre-
sentative set of values.

and ⁄ sets the overall size of the potential.
The gauge sector is not relevant for the homogeneous false vacuum tunnelling process, and

we choose this specific set up anticipating the discussion of magnetic monopoles catalysing the
phase transition in section 2.2. Since „ is charged under SU(2), terms in the potential must
be powers of the gauge invariant combination „†„, so in order to satisfy both these conditions
the potential must be stabilised by an operator with dimension > 4. We are assuming that
the („†„)3 stabilises the potential at large „ and we can ignore operators with dimension
> 6, although adding higher order terms with positive coe�cients does not alter our results
significantly.

The tunnelling process involve bubble profiles that are spatially spherically symmetric. It
will be convenient to parametrise the SU(2) triplet „ by a dimensionless profile h defined by

„†„ = v2h2. (3)

For the homogeneous false vacuum decay the orientation of the scalar „ is arbitrary and
constant, whereas for the monopole solution it is given by the hedgehog configuration (equa-
tion 13).

The tunnelling solutions will be dictated by the scalar field profile h. We will use a sub-
script ‘fvb’ to refer to the false vacuum bounce solution, subscript ‘m’ to the static monopole
profile and ‘mb’ to the monopole tunnelling solution. We will often make use of the rescaled
potential V written in terms of h with the parameter ⁄ factored out:

⁄v4V (h) = V„(v2h2). (4)

In both cases we work in the zero temperature limit and assume that the e�ects of gravity
are negligible.

2.1 False vacuum decay
The rate for the false vacuum tunnelling process, defined as the rate of bubble nucleation per
unit volume is given by [42,43]

�fvb = A4e≠Bfvb . (5)

The dominant suppression of the decay rate comes from the exponential dependence on the
bounce action Bfvb, and the calculation of this quantity is the focus of this paper. In equa-
tion (5) A is related to the determinant of fluctuations around the bounce solution [43], and

4
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Figure 1: Cartoon of the seeded and homogeneous bubbles. Elliptical bubbles with an

O(2) symmetry are nucleated on the domain walls, while spherical bubbles with O(3)

symmetry are nucleated in the homogeneous spacetime far from the domain walls.

formation of Higgs bubbles nucleated on the domain wall plane. These bubbles are not

spherically symmetric due to the presence of the wall, but are elliptical with a reduced O(2)

symmetry, see figure 1 for a cartoon of the seeded and homogeneous bubbles. Ref. [61]

showed that the seeded transition is generically faster than the homogeneous one, and that

regions of parameter space which are naively ruled out (because the homogeneous one is

suppressed) can become viable due to the presence of domain walls acting as catalyzing

seeds.

The analysis in ref. [61] was carried out in the high–temperature limit. In addition,

the seeded tunnelling probability was evaluated either in the thin wall limit, or within the

lower dimensional theory on the domain wall after integrating out the Kaluza–Klein states

along the orthogonal direction. While these methods provide a new qualitative picture

of the seeded tunnelling, in certain temperature ranges neither of these approximations

can be applied, leaving a gap in calculability. This prevents an accurate determination of

thermodynamical quantities such as the latent heat and the nucleation rate.

In this paper we overcome several limitations of the study in ref. [61] and provide

a state-of-the-art analysis of seeded vacuum decay including the full one-loop thermal

potential. The use of the mountain pass algorithm, first presented in ref. [60] for the case

of monopole catalysed tunnelling, allows us to numerically solve the equations of motion in

the presence of a domain wall background without resorting to an approximation scheme

such as the high temperature expansion or the thin wall limit 3. With these results we can

determine the regions of parameter space where the catalysed phase transition nucleates

while the homogeneous transition is too slow to complete. Even for parameters where the

homogeneous transition is cosmologically fast, we confirm that the catalysed transition is

the dominant process, being exponentially enhanced relative to the homogeneous decay.

A crucial quantity determining the phenomenology of a first order phase transition

is its duration or time scale, usually indicated by the dimensionless quantity �/H, with

3
See appendix A for a comparison with the previous results of ref. [61].

– 3 –

Fig. from Agrawal, SB, Mariotti, Nee 
[2312.06749] JHEP

• Topological defects 

The nature of impurities

Domain walls

Fig. from SB, Mariotti, 
[2405.08060] SciPost Phys.

Figure 1: Three–dimensional representation of a critical bubble of broken electroweak

symmetry seeded by the QCD axion string. The string is shown in red, and it is taken to

be straight and aligned with the vertical z direction. The Higgs bubble in green is nucleated

around the string with a non–spherical shape, corresponding to the surface where the Higgs

field is h(r, z) ⇠ 25GeV for illustration purposes. Detailed information is given in Sec. 5.3.

Let us also mention that, as one expects a large hierarchy between the EW scale and

the PQ scale, our analysis will be based on an e↵ective field theory (EFT) for the Higgs field

where the heavy degrees of freedom (including the basic axion string) are integrated out 3.

Our EFT matches the known results for the SM + axion (or ALP) EFT, see e.g. [74–76],

but additionally allows to take into account the presence of the axion string in a simple way.

We will also comment on how the relevance of the di↵erent higher–dimensional operators in

the ALP EFT is modified in the string background. We believe that our approach provides

an e�cient framework to study the dynamics of EW–scale states coupled to strings of large

tension, which can be applied to many extensions of the SM.

This paper is organized as follows. In Sec. 2 we introduce our Lagrangian and comment

on the di↵erent realizations depending on whether the EW phase transition is first order

or not. We also present a brief overview of the possible QCD axion string solutions allowed

by the model. In Sec. 3 we derive the EFT for the Higgs field in the string background,

and carry out the relevant computations that are needed to study the thermal history of

the Higgs sector. This is discussed in detail in Sec. 4 for the minimal SM + PQ scenario,

and in Sec. 5 for a model with a first order EW phase transition. We conclude in Sec. 6.

2 Setup

Our setup consists of a complex scalar field � charged under a global U(1) Peccei–Quinn

symmetry coupled to the scalar sector of the Standard Model via a portal interaction of

3
See [72, 73] for a similar approach in the context of branes and strings with fluxes.

– 3 –

Cosmic strings

Fig. from Lee et al., 
[1310.3005], PRD

Yajnik, PRD, 1986
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symmetry seeded by the QCD axion string. The string is shown in red, and it is taken to

be straight and aligned with the vertical z direction. The Higgs bubble in green is nucleated

around the string with a non–spherical shape, corresponding to the surface where the Higgs

field is h(r, z) ⇠ 25GeV for illustration purposes. Detailed information is given in Sec. 5.3.

Let us also mention that, as one expects a large hierarchy between the EW scale and

the PQ scale, our analysis will be based on an e↵ective field theory (EFT) for the Higgs field

where the heavy degrees of freedom (including the basic axion string) are integrated out 3.

Our EFT matches the known results for the SM + axion (or ALP) EFT, see e.g. [74–76],

but additionally allows to take into account the presence of the axion string in a simple way.

We will also comment on how the relevance of the di↵erent higher–dimensional operators in

the ALP EFT is modified in the string background. We believe that our approach provides

an e�cient framework to study the dynamics of EW–scale states coupled to strings of large

tension, which can be applied to many extensions of the SM.

This paper is organized as follows. In Sec. 2 we introduce our Lagrangian and comment

on the di↵erent realizations depending on whether the EW phase transition is first order

or not. We also present a brief overview of the possible QCD axion string solutions allowed

by the model. In Sec. 3 we derive the EFT for the Higgs field in the string background,

and carry out the relevant computations that are needed to study the thermal history of

the Higgs sector. This is discussed in detail in Sec. 4 for the minimal SM + PQ scenario,

and in Sec. 5 for a model with a first order EW phase transition. We conclude in Sec. 6.
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Our setup consists of a complex scalar field � charged under a global U(1) Peccei–Quinn

symmetry coupled to the scalar sector of the Standard Model via a portal interaction of
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Cosmic strings

Fig. from Lee et al., 
[1310.3005], PRD

Yajnik, PRD, 1986

Can be realized in 
superfluid He!
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Defect Dimension Homotopy Mass

Domain walls 2

Cosmic strings 1

π0(ℳ)

π1(ℳ)

σL2

μL

Fig. from Ringeval 2010

U(1) → nothing

ℤ2 → nothing

Topological classification
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𝑉 = −
1
2

(𝜇2 − 𝑐h𝑇2)h2 +
1
4

𝜆 h4

−
1
2

(𝑚2 − 𝑐𝑠𝑇2)𝑆2 +
1
4

𝜂 𝑆4

+
1
2

𝜅 h2𝑆2

See e.g. Espinosa, Gripaios, Konstandin, Riva [1110.2876] JCAP

*  breaking terms destabilize the wall 
network and are set to zero in the following
ℤ2

• SM + scalar singlet with ℤ2 : S → − S

EWPT with a singlet
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 At  bubbles may nucleate on the walls T seed
n

• Competition between homogenous 
and seeded nucleation for 2nd step:

EWPT with a singlet

TDW Tc Tn
time

  (0,0) → (0, ± vs)   (0, ± vs) → (v,0)

+𝑣𝑠

−𝑣𝑠

+𝑣𝑠

Hubble 
volume

𝜉 ∼ 𝑂(1)

hom.

seeded
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 At  bubbles may nucleate on the walls T seed
n

Lazarides, Shafi, Kibble 1982, PRD
Perkins, Vilenkin 1992, PRD

- Define nucleation rate per unit surface

- Stricter nucleation condition (only on 

sub manifold)

EWPT with a singlet

TDW Tc Tn
time

  (0,0) → (0, ± vs)   (0, ± vs) → (v,0)
• Competition between homogenous 

and seeded nucleation for 2nd step:

+𝑣𝑠

−𝑣𝑠

+𝑣𝑠

Hubble 
volume

𝜉 ∼ 𝑂(1)

hom.

seeded
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1. Solving coupled system of PDEs 2. Thin wall approximation 3. Kaluza-Klein decomposition 

• “Exact” 

• Physical picture?  

• Which initial conditions for 
the algorithm? 

• Limited validity 

• Intuitive picture 

• Simple calculation 

• Quantitative results 

• Still intuitive 

• Initial conditions for num. 
algorithms and cross-checks

Only O(2) symmetry

Figure 1: Cartoon of the seeded and homogeneous bubbles. Elliptical bubbles with an

O(2) symmetry are nucleated on the domain walls, while spherical bubbles with O(3)

symmetry are nucleated in the homogeneous spacetime far from the domain walls.

formation of Higgs bubbles nucleated on the domain wall plane. These bubbles are not

spherically symmetric due to the presence of the wall, but are elliptical with a reduced O(2)

symmetry, see figure 1 for a cartoon of the seeded and homogeneous bubbles. Ref. [61]

showed that the seeded transition is generically faster than the homogeneous one, and that

regions of parameter space which are naively ruled out (because the homogeneous one is

suppressed) can become viable due to the presence of domain walls acting as catalyzing

seeds.

The analysis in ref. [61] was carried out in the high–temperature limit. In addition,

the seeded tunnelling probability was evaluated either in the thin wall limit, or within the

lower dimensional theory on the domain wall after integrating out the Kaluza–Klein states

along the orthogonal direction. While these methods provide a new qualitative picture

of the seeded tunnelling, in certain temperature ranges neither of these approximations

can be applied, leaving a gap in calculability. This prevents an accurate determination of

thermodynamical quantities such as the latent heat and the nucleation rate.

In this paper we overcome several limitations of the study in ref. [61] and provide

a state-of-the-art analysis of seeded vacuum decay including the full one-loop thermal

potential. The use of the mountain pass algorithm, first presented in ref. [60] for the case

of monopole catalysed tunnelling, allows us to numerically solve the equations of motion in

the presence of a domain wall background without resorting to an approximation scheme

such as the high temperature expansion or the thin wall limit 3. With these results we can

determine the regions of parameter space where the catalysed phase transition nucleates

while the homogeneous transition is too slow to complete. Even for parameters where the

homogeneous transition is cosmologically fast, we confirm that the catalysed transition is

the dominant process, being exponentially enhanced relative to the homogeneous decay.

A crucial quantity determining the phenomenology of a first order phase transition

is its duration or time scale, usually indicated by the dimensionless quantity �/H, with

3
See appendix A for a comparison with the previous results of ref. [61].
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1. Equations of motion

∂2ϕ
∂r2

+
1
r

∂ϕ
∂r

+
∂2ϕ
∂z2

=
∂V
∂ϕ

, ϕ = h, S

h(∞, z) = h(ρ, ± ∞) = 0

S(∞, z) = SDW (z), S(r, ± ∞) = ± vs,

False vacuum is non-trivial as it depends on z

+vs

−vs

r

z
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2. Thin wall approximation

+vs

−vs

r

z

E(R) = −
4π
3

ϵ R3 + 4π (σB −
1
4

σDW) R2

Gain by eating up 
domain wall surface

(Similar to nucleating a hole 
in string-wall networks)
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3. Kaluza-Klein decomposition

𝑆 = 𝑆DW(𝑧) + ∑
𝑘

𝑠𝑘(𝑥𝜇)𝜎𝑘(𝑧)

h = ∑
𝑘

h𝑘(𝑥𝜇)𝜙𝑘(𝑧)

𝑥𝜇 = 𝑡, 𝑥, 𝑦

z

𝒔𝒌,  𝒉𝒌

• Expand the fields around the domain wall 
background:
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3. Kaluza-Klein decomposition

𝑆 = 𝑆DW(𝑧) + ∑
𝑘

𝑠𝑘(𝑥𝜇)𝜎𝑘(𝑧)

h = ∑
𝑘

h𝑘(𝑥𝜇)𝜙𝑘(𝑧)

𝑥𝜇 = 𝑡, 𝑥, 𝑦

𝒔𝒌,  𝒉𝒌

• Expand the fields around the domain wall 
background:

• Eigenspectrum of excitations:

See also “Solitons and instantons”, Rajaraman 1982
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3. Kaluza-Klein decomposition

𝒔𝒌,  𝒉𝒌

• Integrate along  to obtain 3d action and 
integrate out continuum excitations:

z • Eigenspectrum of excitations:

S3d = ∫ d3x
1
2

(∂μh0)2 +
1
2

(∂μs0)2 − V eff
3d (h0, s0)

See also “Solitons and instantons”, Rajaraman 1982

Simone Blasi - GW BSM 4



3. Kaluza-Klein decomposition

𝒔𝒌,  𝒉𝒌

• Integrate along  to obtain 3d action and 
integrate out continuum excitations:

z • Eigenspectrum of excitations:

S3d = ∫ d3x
1
2

(∂μh0)2 +
1
2

(∂μs0)2 − V eff
3d (h0, s0)

Seeded tunneling as homogeneous 
problem in lower dimension!

Tunneling trajectory can be obtained with 
standard tools CosmoTransitions

See also “Solitons and instantons”, Rajaraman 1982
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EWPT with a singlet
• Comparison of the various methods:
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Figure 8: Comparison of the homogeneous bounce action S3/T (red) in the leading high–

temperature approximation, and the seeded bounce action evaluated with the MPT (red

diamonds) and within the EFT within di↵erent approximations: zeroth order where KK

states are neglected in green, O(1/m2
KK) in orange and O(1/m4

KK) in blue. The purple line

shows the seeded bounce action within the thin wall approximation.

grant numbers 12B2323N. This work is supported by the Deutsche Forschungsgemeinschaft

under Germany’s Excellence Strategy - EXC 2121 Quantum Universe - 390833306.

A Comparison to previous work

In this appendix, we provide a comparison between the results obtained within the domain

wall e↵ective field theory (EFT) and the MPT algorithm by retaining only the leading

terms in the high–temperature approximation. This provides a non trivial cross check

of our methods and corroborates our strategy in view of generalising these results to full

1-loop thermal potentials.

In figure 8 we compare the tunneling action evaluated with the domain wall EFT

(described in further detail in ref [61]) and the MPT algorithm, for the benchmark point

given by  = 1.3, ⌘ = 1.6 and µs ' 127 GeV leading to a singlet mass in the true vacuum

mS = 250GeV at zero temperature. For this benchmark the critical temperature is Tc '
110 GeV. At Tr ' 74 GeV the tunnelling action approaches zero, signaling a classical

instability of the domain walls.

The temperature range where the EFT is supposed to provide reliable results for the

bounce action can be estimated by considering the ratio between the lightest Higgs zero

mode mass, !2
0(T ) (see equation (3.10)), and the mass scale of the continuum KK states,

m2
KK(T ). When this ratio is small, integrating out the KK states is indeed justified and the

expansion in terms of the inverse KK mass is supposed to be converging. In practice, it is

more convenient to identify the range of validity by comparing the prediction for the bounce

– 25 –
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Figure 2: Parameter space for the electroweak phase transition in the xSM with Z2

symmetry. The region between the solid gray lines indicates where a two–step phase

transition takes place. In the upper left corner the electroweak phase transition is second

order, while the lower right corner is unable to reproduce the correct electroweak vacuum

at zero temperature. Above the red solid line the homogeneous transition is cosmologically

fast, but the catalyzed transition nucleates at higher temperatures. Between the red and

blue solid lines only the seeded transition can lead to successful nucleation, while below

the blue line the universe remains trapped in the false vacuum. Dotted lines have the same

meaning of the solid lines but are obtained within the high–temperature approximation

instead of the full one–loop thermal potential.

di↵erent vacua ±vs related by the Z2. In the high temperature limit, a planar domain wall

solution can be obtained exactly considering the potential in Eq. (2.9):

SDW(z) = vS(T ) tanh

 
⌘1/2vS(T )zp

2

!
, vS(T ) =

s
µ2
s � csT 2

⌘
, (2.12)

where z is the coordinate orthogonal to the wall.

Away from the high–T limit, the domain wall shape needs to be determined numerically

as the solution to

S00(z) =
@

@S
Ve↵(0, S(z); T ), S(±1) = ±vs(T ), (2.13)

where the e↵ective potential is given in Eq.(2.8) and we have taken h = 0 according to the

false vacuum configuration (h, S) = (0, vs(T )).

The solution to (2.13) can be e�ciently obtained by using the following first integral:

I = �1

2
S0(z)2 + Ve↵(0, S; T ) = Ve↵(0, vs; T ) (2.14)

which fixes the slope of the domain wall profile at the center, z = 0, as

S0(0) =
p

2(Ve↵(0, 0; T ) � Ve↵(0, vs; T )), (2.15)

– 7 –

• Seeded transition is faster in all the 
two—step parameter space

• New parameter space becomes 
viable thanks to seeded tunneling

Pheno implications
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Figure 5: Left. Nucleation and percolation temperature, Tn and Tp, for the homogeneous

phase transition (dashed) and the seeded phase transition (solid) for di↵erent values of ⇠ as

a function of the portal coupling  fixing ⌘ = 1 and mS = 200GeV. The green line indicates

the temperature at which the vacuum energy begins to dominate. Right. Trajectories in

the (↵, HRp) plane by varying  according to the range in the left panel ( increases moving

from left to right) for the homogeneous transition (dashed) and the seeded transition (solid)

for di↵erent values of ⇠. Also shown are contours indicating the peak gravitational wave

amplitude from sound waves, as well as the region where sound waves can be long lasting

(see section 5 for more details). The wall velocity has been fixed to vw ⇠ 1 in both panels.

latter, di↵erent numbers of domain walls per Hubble patch are considered, namely ⇠ = 2

and ⇠ = 5.

As we can see, the homogeneous phase transition becomes more and more supercooled

for larger , until it fails to complete for  & 0.90. On the other hand, we find successful

percolation for the seeded phase transition beyond this value of the portal up to  ⇡ 0.98,

in agreement with the general behaviour discussed around figure 2. As we are using the

thin wall approximation in this analysis, this value of the end point should however be

taken only as an indication.

Due to the weak logarithmic dependence on ⇠, the nucleation temperature defined in

equation (2.27) is practically the same for all the considered values of ⇠, and we then only

show the case of ⇠ = 2. On the other hand, the percolation temperature Tp has a relatively

stronger dependence on ⇠ as long as the network is sparse, ⇠ ⇠ O(1), as shown explicitly

in figure 5 left. While the dependence of Tp on ⇠ is still mild, this can lead to a significant

change in other quantities such as ↵ and Rp, as shown by the di↵erent trajectories in the

right panel of figure 5. For larger values of ⇠, Tp and Tn are practically the same (as long

as the relevant time scale of the transition is set by the domain wall distance).

The bubble size, HRp, and latent heat, ↵, as  is varied are shown in the right

panel of figure 5 for both the homogeneous and the seeded transition (by the dashed and

solid trajectories, respectively). The black dots indicate the sampled values of the portal

coupling: they are uniformly sampled with � = 0.01 within  2 (0.865, 0.895) for the

homogeneous transition, and within  2 (0.865, 0.985) for the seeded counterpart. The

values of ↵ and Rp are evaluated according to section 4.3 and section 4.4.

– 18 –

• Homogenous PT: bubble size and 
strength are strongly correlated

• Seeded PT: pheno controlled by the 
# of defects per Hubble volume ξ

2. Dense networks : bubble size 
determined by nucleation rate

ξ ≫ 1

1. Sparse networks : size determined 
by average distance between defects

ξ ∼ 1

Pheno implications
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Figure 7: Peak frequency and amplitude of the gravitational wave signal from the homo-

geneous and catalysed transitions for the parameter points discussed in section 4.5. The

solid lines indicate the catalysed transitions for di↵erent ⇠ values and the dashed line shows

the homogeneous transition. The coloured contours indicate the signal to noise ratio in

LISA.

The decorrelation of ↵ and Rp for seeded transitions with small ⇠ manifests in figure 7

as almost vertical trajectories. This is as Rp is fixed by the domain wall separation, so the

peak frequency shifts only due to the change in Tp as  is varied, while the peak amplitude

increases as ⌦gw / ↵2Rp. This is in contrast to the homogeneous line and the transitions

for ⇠ = 102 where the timescale is set instead by the nucleation rate and the peak frequency

shifts more significantly due to the changing size of bubbles as they collide. Similarly to

figure 6, a smaller ⇠ generically leads to a larger signal amplitude. However, this does not

necessarily translate in a larger SNR because of the shift to lower frequencies where LISA

starts losing sensitivity. In this regard, future experiments such as µAres [126] could more

e�ciently probe the gravitational background in the case of sparse networks.

6 Conclusions & Outlook

The xSM is a simple model which encapsulates new physics that can modify the EWPT,

possibly leading to an observable spectrum of GWs. The Z2 symmetric limit of this model

has been put forward as a test case for simple weak scale new physics that can remain

hidden from current collider and precision searches, although it may be within reach of

future colliders.

We have shown that in a large part of the relevant parameter space, the phase transition

dynamics are modified due to the presence of domain walls. The decay of the false vacuum

proceeds through tunnelling catalyzed by domain walls, instead of through homogeneous

bubble nucleation. This changes the viability of specific parameter space points in the

model and qualitatively modifies the gravitational wave signal.

– 23 –
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• Domain wall network mimicked by Ising model • Spectrum shifted to IR with enhanced amplitude 

Seeded

Figure 4: Final spectra of the gravitational waves with (left) and without (right)
the domain wall network. The strength of the phase transition is ↵ = 0.05, and the
velocities of the bubble walls are (from top to bottom) vw = 0.4, 0.55 and 0.8.

11

(ξH)−1

Seeded: 

+


possible differences in 
spectral shape?

β → 1/ξH*

Homogeneous

R

Fig. from SB, Jinno, Konstandin, Rubira, 
Stomberg [2302.06952] JCAPHiggsless-hydro simulation
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Tunneling from real-time simulations 8

space, which tend to have close values of the field and are
thus not independent of each other. Therefore, if a given
point of space acquires a field value beyond the maximum
of the potential, this is in a way of saying it “communi-
cated” to its neighboring points. This is a distinctive
trait of the field system’s dynamics that di↵ers from the
single particle case. It is then fair to expect that the two
cases, where the initial minimum is a true or a false vac-
uum, must be treated separately. As we will learn shortly,
these features naturally emerge along the computation in
a generalized flux-over-population method and this ap-
proach allows for a satisfactory definition of the escape
problem. In particular, a critical volume of space that ex-
periences hopping is precisely defined by the formalism.
To perform this analysis, we should first introduce some
of the necessary ingredients from stochastic field theory.

B. Stochastic field theory

Let us review here some of the basics of stochastic field
theory and introduce the relevant quantities needed for
the derivation of the escape rate.

1. The Langevin and Fokker-Planck equations

The dynamics of a classical field configuration under
random fluctuations and dissipation is an extremely im-
portant subject in many di↵erent branches in modern
physics as far as the description of nonequilibrium fields
is concerned (for a thorough introduction and review, see,
e.g., Ref. [21]). A natural characteristic when studying
the evolution of a system in interaction with an environ-
ment is the presence of both dissipative and stochastic
terms. For instance, in the context of quantum fields,
we might be interested in the derivation of an e↵ective
equation of motion for a given field background con-
figuration which represents some relevant characteristic
of the system under study (e.g., a vacuum expectation
value taking the role of an order parameter important
in a phase transition problem). Typically, this involves
a selection of a relevant field mode, in which we are in-
terested in the dynamics and will represent the physi-
cal system, while the remaining degrees of freedom are
taken as an environment. The degrees of freedom that
are regarded as environment can also include any other
fields in the original model Lagrangian (see for instance
Ref. [21] for a review and discussion about these types
of equations and their derivation in the context of quan-
tum field theory). In quantum field theory, the preferred
methodology used to study dynamical e↵ects in general is
the closed time path formalism [22]. The e↵ective equa-
tion of motion for an interacting scalar field is Langevin-
like, and includes an explicit fluctuation-dissipation re-
lation (see, e.g., Refs. [23–27]). Generically, the usual
relativistic Klein-Gordon equation describing the dynam-
ics of the scalar field in a potential V (�) is modified to

take the thermal fluctuations into account and becomes
a Langevin equation,

(@2
t �r

2)�(~x, t) +
@V (�)

@�
+ ⌘�̇(~x, t) = ⇠(~x, t), (3.1)

where ⌘ is the dissipation coe�cient and ⇠ is a Gaussian
white noise satisfying

h⇠(~x, t)i = 0,

h⇠(~x, t)⇠(~x0, t0)i = ⌦�3(~x� ~x0)�(t� t0), (3.2)

where ⌦ parametrizes the strength of the noise and sat-
isfies the Einstein relation ⌦ = 2⌘/� = 2⌘kBT . In the
quantum field theory context, both the potential and the
dissipation coe�cient in Eq. (3.1) can be functions of
the temperature and on the details of the interactions in
the full original microscopic Lagrangian density, carry-
ing, for example, information on the interactions of the
scalar field � with other field degrees of freedom. In the
following, we will assume a particular fixed form for the
potential and the dissipation coe�cient. It is straight-
forward to generalize the analysis for other forms, for
example, that include the dependence on the tempera-
ture. Exploring the full quantum origin of the Langevin
equation for the expectation value of a field goes beyond
the scope of this work. We refer the interested reader
to [21] and references therein. Thus, for the rest of this
work, we will simply assume the existence of a Langevin
equation of the form of Eq (3.1).
As an important point of detail, when dealing with

integrals over the field space, we discretize the space by
adopting the following conventions,

�(~x, t) ! �(xi, t) = �i(t),

Z
d3~x ! a3

N3X

i=1

,

�(~x� ~y) !
�ij
a3

, (3.3)

such that

Z
d3~x �(~x� ~y) = a3

N3X

i=1

�ij
a3

= 1, (3.4)

where the volume V = L3 = (N · a)3, with N being the
number of discrete sites in each direction and a the spac-
ing between two adjacent points. Taking into account the
field and its conjugate momentum, in a space of three di-
mensions, we are considering a 2N3-dimensional system.
For simplicity, we have labeled the spatial points in the
three spatial directions with a single label i instead of ijk.
For the sake of clarity, we will also denote the Laplacian
as r2

ij�j . The actual definition in discrete space is given
by

r
2�ijk =

1

a2
[�i+1,j,k + �i�1,j,k + �i,j+1,k

• Langevin approach to mimic the thermal bath via fluctuation-dissipation: 
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space, which tend to have close values of the field and are
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point of space acquires a field value beyond the maximum
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trait of the field system’s dynamics that di↵ers from the
single particle case. It is then fair to expect that the two
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these features naturally emerge along the computation in
a generalized flux-over-population method and this ap-
proach allows for a satisfactory definition of the escape
problem. In particular, a critical volume of space that ex-
periences hopping is precisely defined by the formalism.
To perform this analysis, we should first introduce some
of the necessary ingredients from stochastic field theory.

B. Stochastic field theory

Let us review here some of the basics of stochastic field
theory and introduce the relevant quantities needed for
the derivation of the escape rate.

1. The Langevin and Fokker-Planck equations
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random fluctuations and dissipation is an extremely im-
portant subject in many di↵erent branches in modern
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equation of motion for a given field background con-
figuration which represents some relevant characteristic
of the system under study (e.g., a vacuum expectation
value taking the role of an order parameter important
in a phase transition problem). Typically, this involves
a selection of a relevant field mode, in which we are in-
terested in the dynamics and will represent the physi-
cal system, while the remaining degrees of freedom are
taken as an environment. The degrees of freedom that
are regarded as environment can also include any other
fields in the original model Lagrangian (see for instance
Ref. [21] for a review and discussion about these types
of equations and their derivation in the context of quan-
tum field theory). In quantum field theory, the preferred
methodology used to study dynamical e↵ects in general is
the closed time path formalism [22]. The e↵ective equa-
tion of motion for an interacting scalar field is Langevin-
like, and includes an explicit fluctuation-dissipation re-
lation (see, e.g., Refs. [23–27]). Generically, the usual
relativistic Klein-Gordon equation describing the dynam-
ics of the scalar field in a potential V (�) is modified to

take the thermal fluctuations into account and becomes
a Langevin equation,
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following, we will assume a particular fixed form for the
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forward to generalize the analysis for other forms, for
example, that include the dependence on the tempera-
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equation for the expectation value of a field goes beyond
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number of discrete sites in each direction and a the spac-
ing between two adjacent points. Taking into account the
field and its conjugate momentum, in a space of three di-
mensions, we are considering a 2N3-dimensional system.
For simplicity, we have labeled the spatial points in the
three spatial directions with a single label i instead of ijk.
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space, which tend to have close values of the field and are
thus not independent of each other. Therefore, if a given
point of space acquires a field value beyond the maximum
of the potential, this is in a way of saying it “communi-
cated” to its neighboring points. This is a distinctive
trait of the field system’s dynamics that di↵ers from the
single particle case. It is then fair to expect that the two
cases, where the initial minimum is a true or a false vac-
uum, must be treated separately. As we will learn shortly,
these features naturally emerge along the computation in
a generalized flux-over-population method and this ap-
proach allows for a satisfactory definition of the escape
problem. In particular, a critical volume of space that ex-
periences hopping is precisely defined by the formalism.
To perform this analysis, we should first introduce some
of the necessary ingredients from stochastic field theory.

B. Stochastic field theory

Let us review here some of the basics of stochastic field
theory and introduce the relevant quantities needed for
the derivation of the escape rate.

1. The Langevin and Fokker-Planck equations

The dynamics of a classical field configuration under
random fluctuations and dissipation is an extremely im-
portant subject in many di↵erent branches in modern
physics as far as the description of nonequilibrium fields
is concerned (for a thorough introduction and review, see,
e.g., Ref. [21]). A natural characteristic when studying
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ment is the presence of both dissipative and stochastic
terms. For instance, in the context of quantum fields,
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equation of motion for a given field background con-
figuration which represents some relevant characteristic
of the system under study (e.g., a vacuum expectation
value taking the role of an order parameter important
in a phase transition problem). Typically, this involves
a selection of a relevant field mode, in which we are in-
terested in the dynamics and will represent the physi-
cal system, while the remaining degrees of freedom are
taken as an environment. The degrees of freedom that
are regarded as environment can also include any other
fields in the original model Lagrangian (see for instance
Ref. [21] for a review and discussion about these types
of equations and their derivation in the context of quan-
tum field theory). In quantum field theory, the preferred
methodology used to study dynamical e↵ects in general is
the closed time path formalism [22]. The e↵ective equa-
tion of motion for an interacting scalar field is Langevin-
like, and includes an explicit fluctuation-dissipation re-
lation (see, e.g., Refs. [23–27]). Generically, the usual
relativistic Klein-Gordon equation describing the dynam-
ics of the scalar field in a potential V (�) is modified to

take the thermal fluctuations into account and becomes
a Langevin equation,
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where ⌦ parametrizes the strength of the noise and sat-
isfies the Einstein relation ⌦ = 2⌘/� = 2⌘kBT . In the
quantum field theory context, both the potential and the
dissipation coe�cient in Eq. (3.1) can be functions of
the temperature and on the details of the interactions in
the full original microscopic Lagrangian density, carry-
ing, for example, information on the interactions of the
scalar field � with other field degrees of freedom. In the
following, we will assume a particular fixed form for the
potential and the dissipation coe�cient. It is straight-
forward to generalize the analysis for other forms, for
example, that include the dependence on the tempera-
ture. Exploring the full quantum origin of the Langevin
equation for the expectation value of a field goes beyond
the scope of this work. We refer the interested reader
to [21] and references therein. Thus, for the rest of this
work, we will simply assume the existence of a Langevin
equation of the form of Eq (3.1).
As an important point of detail, when dealing with

integrals over the field space, we discretize the space by
adopting the following conventions,
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where the volume V = L3 = (N · a)3, with N being the
number of discrete sites in each direction and a the spac-
ing between two adjacent points. Taking into account the
field and its conjugate momentum, in a space of three di-
mensions, we are considering a 2N3-dimensional system.
For simplicity, we have labeled the spatial points in the
three spatial directions with a single label i instead of ijk.
For the sake of clarity, we will also denote the Laplacian
as r2

ij�j . The actual definition in discrete space is given
by
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Figure 1: Schematic example potential showing a (metastable) false vacuum at ωF and a
(stable) true vacuum at ωT.

where we have kept all indices lowered to emphasise the Euclidean signature of the
metric. Let us assume that V (ω) has one (metastable) minimum at ω = ωF and a
deeper one at ω = ωT, such as in Figure 1. The metastable, or false, vacuum will
then decay to the stable, or true, vacuum with a rate per unit volume given at zero
temperature by [5, 7, 14, 43–45]

! =

(
S[ωb]

2ε

)d/2
∣∣∣∣∣
det→

(
→↑2 + V

→→(ωb)
)

det (→↑2 + V →→(ωF))

∣∣∣∣∣

↑1/2

e
↑(S[ωb]↑S[ωF]). (3)

Here det→ signifies that the translational zero modes are omitted from the determinant,
and ωb denotes the bounce solution, also referred to as the critical bubble.

We assume that the bounce only depends on the radial coordinate r ↓ ↔
xµxµ and

satisfies [14]

ϑS[ω]

ϑω

∣∣∣∣
ωb

= →ϖ
2
ωb(r) → (d → 1)

r
ϖωb(r) + V

→(ωb) = 0, (4)

subject to the boundary conditions,

lim
r↓↔

ωb(r) = ωF, ϖωb|r=0 = 0. (5)

Here we have introduced the shorthand ϖ ↓ ε

εr
. These boundary conditions are pre-

served by the functions included in the functional determinant, as they can be con-
sidered additive fluctuations about the background. The fluctuations are therefore
regular at the origin and go to zero at infinity.

Note that equation (3) only incorporates 1-loop corrections—via the determi-
nant—and higher loop corrections are omitted in this work.

Multi-field models In more complicated models, the full functional determinant
runs over all the fields. In principle these fields can mix, either through the mass
matrix, or through derivative terms. However, in the present work we will assume
that the functional determinants can be diagonalised in field space. We also assume
that that there is only one background field ω(r) that is coordinate dependent.

As a concrete example, consider first a scalar theory with a global U(1) symmetry
and with Euclidean Lagrangian

L = (↑µ”)↗↑µ” + V (”), (6)

V (”) = m
2”↗” + ϱ(”↗”)2. (7)

5
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Tunneling from real-time simulations
• Applying this method for the first time to seeded nucleation in :d = 2 + 1
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Tunneling from real-time simulations
• Extracting the continuum limit with lattice counter-terms (1-loop):

(a)

(d)

(b)

(c)

Figure 16: The one loop graphs needed for the renormalization. A cross represents a
ω2 insertion.

Note that the sign of ε depends on whether we use an improved lattice Laplacian. This

is possible because ε represents the difference of a graph between lattice and continuum
theories. The lattice contribution is larger inside the Brillouin zone, but the continuum

integral receives contributions from outside the zone as well; the sign depends on which
effect is larger.

At one loop the renormalizations are

δλ1,1l =
(
3

2
λ2
1 +

3

2
λ2
2

)
ε

4π
, (1.8)

δλ2,1l =
(
λ1λ2 + 2λ2

2

) ε

4π
, (1.9)

Zφ,1l → 1 = 0 , (1.10)

Zm,1l → 1 =
(
1

2
λ1 +

1

2
λ2

)
ε

4π
, (1.11)

δm2
1l = →

(
1

2
λ1 +

1

2
λ2

)
Σ

4π
, (1.12)

δ〈ω2〉1l = 2
Σ

4π
→ 2m2 ε

4π
. (1.13)

Note that, if λ1 = λ2, then δλ1 = δλ2; and similarly if λ1 = 3λ2, then δλ1 = 3δλ2.

Therefore the decoupling and O(2) symmetric versions of the theory are preserved
under renormalization.
It makes no sense to carry the matching to two loops unless we use the improved

lattice Laplacian, as O(a2) errors would already appear at two loop level. The two loop
results require several more graphs and the inclusions in one loop graphs of the one loop

mass and coupling counterterms, see Fig. 17. Three more integrals are needed, and
their evaluation is detailed in the appendix. The complete two loop renormalization is

47

Fig. from Moore, Rummukainen, 
Tranberg [hep-lat/0103036], JHEP

∼ log a/μ

Simone Blasi - GW BSM 4



• Thermal nucleation rate per unit volume in :d + 1

Figure 1: Schematic example potential showing a (metastable) false vacuum at ωF and a
(stable) true vacuum at ωT.
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metric. Let us assume that V (ω) has one (metastable) minimum at ω = ωF and a
deeper one at ω = ωT, such as in Figure 1. The metastable, or false, vacuum will
then decay to the stable, or true, vacuum with a rate per unit volume given at zero
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Multi-field models In more complicated models, the full functional determinant
runs over all the fields. In principle these fields can mix, either through the mass
matrix, or through derivative terms. However, in the present work we will assume
that the functional determinants can be diagonalised in field space. We also assume
that that there is only one background field ω(r) that is coordinate dependent.

As a concrete example, consider first a scalar theory with a global U(1) symmetry
and with Euclidean Lagrangian

L = (↑µ”)↗↑µ” + V (”), (6)
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The inclusion of vector fields, such as in the electroweak theory, inevitably leads
to o!-diagonal terms in field space, through mixing with Goldstone fields [7, 38, 47,
48]. Accounting for such mixing terms goes beyond the scope of this first version of
BubbleDet. However, one can approximate the full vector-field one-loop determinant
by dropping the o!-diagonal terms. This can be expected to capture the correct order
of magnitude of the functional determinant. Vector fields are discussed further in
Appendix B. Nevertheless, while we do not consider full multi-field determinants in
this work, several such computations exist in the literature [6, 7, 38, 49–52].

Finite temperature transitions At high temperatures it is possible for fields to
borrow energy from the thermal bath and escape from a metastable state. In addition,
if the nucleating field evolves parametrically slower than the inverse temperature, we
can describe its dynamics classically in real time. As such, J.S. Langer’s framework
of classical nucleation theory is applicable [8, 39, 53, 54], and the rate factorises into
dynamical and statistical parts

”T = Adyn → Astat. (15)

For thermal nucleation in d + 1 spacetime dimensions, the statistical factor Astat

coincides with the vacuum decay rate in d dimensions given by equation (3), and thus
can be computed directly with BubbleDet. Albeit with one caveat: Thermal corrections
from nonzero Matsubara modes should be included in the tree-level potential when
computing Astat [10, 53, 55].

The dynamical factor Adyn contains dissipative e!ects and, unlike Astat, it is not
expected to exponentiate. In Langer’s framework, which assumes Langevin dynamics,
the dynamical factor is equal to the real-time growth rate of a critical bubble divided
by 2ω . This can be expressed as [39, 56,57]

Adyn =
1

2ω

(√
|ε→| +

ϑ2

4
↑ ϑ

2

)
, (16)

in terms of the negative eigenvalue of the functional determinant ε→, and the Langevin
damping coe#cient ϑ. The negative eigenmode is the lowest eigenvalue of the Higgs
fluctuation operator OH(ϖb), and corresponds to isotropic growth or shrinking of the
bubble. This identification receives corrections at higher orders [54]. The computation
of ε→ can be carried out using BubbleDet, but that of ϑ requires additional real-time
input. Setting ϑ = 0 yields the approximation of Ref. [9], though in this limit the
saddlepoint approximation is expected to break down [56].

3.2 The Gelfand-Yaglom theorem

To find the rate in equation (3) we need to evaluate the functional determinant
det

(
↑↓2 + W (r)

)
. For a constant scalar field ϖ one finds the usual e!ective poten-

tial [58, 59], however, closed analytical expressions are in general not available for a
spatially varying field.

Instead numerical techniques are required. As an initial step it is useful to exploit
the spherical symmetry and to expand all eigenfunctions in spherical harmonics:

det
(
↑↓2 + W (r)

)

det (↑↓2 + W (↔))
= !↑

l=0

[
det

(
↑↓2

l
+ W (r)

)

det (↑↓2
l

+ W (↔))

]deg(d;l)

, (17)

where

deg(d; l) =
(d + 2l ↑ 2)”(d + l ↑ 2)

”(d ↑ 1)”(l + 1)
(18)
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Figure 1: Schematic example potential showing a (metastable) false vacuum at ωF and a
(stable) true vacuum at ωT.

where we have kept all indices lowered to emphasise the Euclidean signature of the
metric. Let us assume that V (ω) has one (metastable) minimum at ω = ωF and a
deeper one at ω = ωT, such as in Figure 1. The metastable, or false, vacuum will
then decay to the stable, or true, vacuum with a rate per unit volume given at zero
temperature by [5, 7, 14, 43–45]
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• In general the determinant involves a product of spherical harmonics:

See e.g. Ekstedt, Gould, Hirvonen 
[2308.15652], JHEP

The inclusion of vector fields, such as in the electroweak theory, inevitably leads
to o!-diagonal terms in field space, through mixing with Goldstone fields [7, 38, 47,
48]. Accounting for such mixing terms goes beyond the scope of this first version of
BubbleDet. However, one can approximate the full vector-field one-loop determinant
by dropping the o!-diagonal terms. This can be expected to capture the correct order
of magnitude of the functional determinant. Vector fields are discussed further in
Appendix B. Nevertheless, while we do not consider full multi-field determinants in
this work, several such computations exist in the literature [6, 7, 38, 49–52].
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can describe its dynamics classically in real time. As such, J.S. Langer’s framework
of classical nucleation theory is applicable [8, 39, 53, 54], and the rate factorises into
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For thermal nucleation in d + 1 spacetime dimensions, the statistical factor Astat

coincides with the vacuum decay rate in d dimensions given by equation (3), and thus
can be computed directly with BubbleDet. Albeit with one caveat: Thermal corrections
from nonzero Matsubara modes should be included in the tree-level potential when
computing Astat [10, 53, 55].

The dynamical factor Adyn contains dissipative e!ects and, unlike Astat, it is not
expected to exponentiate. In Langer’s framework, which assumes Langevin dynamics,
the dynamical factor is equal to the real-time growth rate of a critical bubble divided
by 2ω . This can be expressed as [39, 56,57]

Adyn =
1

2ω

(√
|ε→| +

ϑ2

4
↑ ϑ

2

)
, (16)

in terms of the negative eigenvalue of the functional determinant ε→, and the Langevin
damping coe#cient ϑ. The negative eigenmode is the lowest eigenvalue of the Higgs
fluctuation operator OH(ϖb), and corresponds to isotropic growth or shrinking of the
bubble. This identification receives corrections at higher orders [54]. The computation
of ε→ can be carried out using BubbleDet, but that of ϑ requires additional real-time
input. Setting ϑ = 0 yields the approximation of Ref. [9], though in this limit the
saddlepoint approximation is expected to break down [56].

3.2 The Gelfand-Yaglom theorem

To find the rate in equation (3) we need to evaluate the functional determinant
det

(
↑↓2 + W (r)

)
. For a constant scalar field ϖ one finds the usual e!ective poten-

tial [58, 59], however, closed analytical expressions are in general not available for a
spatially varying field.

Instead numerical techniques are required. As an initial step it is useful to exploit
the spherical symmetry and to expand all eigenfunctions in spherical harmonics:

det
(
↑↓2 + W (r)

)

det (↑↓2 + W (↔))
= !↑

l=0

[
det

(
↑↓2

l
+ W (r)

)

det (↑↓2
l

+ W (↔))

]deg(d;l)

, (17)

where

deg(d; l) =
(d + 2l ↑ 2)”(d + l ↑ 2)

”(d ↑ 1)”(l + 1)
(18)
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is the degeneracy factor for the orbital quantum number l. Dependence on the magnetic
orbital quantum number (normally denoted m) is trivial; it is completely accounted
for by the degeneracy factor. The spherical Laplacian is

→2
l

= ω
2 +

d ↑ 1

r
ω ↑ l(l + d ↑ 2)

r2
. (19)

To compute the determinant for given l we use the Gelfand-Yaglom theorem, which
in our case states that [60–63]

det
(
↑→2

l
+ W (r)

)

det (↑→2
l

+ W (↓))
=

ε
l

b(↓)

ε
l

F(↓)
, (20)

where the ε
l

b,F
(r) satisfy the di!erential equations

[
↑→2

l
+ W (r)

]
ε
l

b
(r) = 0,

[
↑→2

l
+ W (↓)

]
ε
l

F
(r) = 0, (21)

with the boundary condition ε
l

b,F
(r) ↔ r

l as r ↗ 0. Note that these equations for ε
l

b,F

are initial value problems, whereas the corresponding eigenfunctions satisfy boundary
value problems. Since W (↓) is a constant, the di!erential equation for ε

l

F
(r) can be

solved analytically.

3.3 One-loop correction to the action

As discussed in Section 3.2, the problem of calculating the rate in equation (3) is
reduced to solving the di!erential equations

[
↑→2

l
+ W (r)

]
ε
l

b
(r) = 0, (22)

for each l. Given the bounce, ϑb(r), these equations can be solved numerically. There
are however a few complications.

First, the determinant vanishes if there are zero modes, so these have to be removed.
Second, in practice we can only solve equation (21) for a finite number of l’s. And third,
the product—or equivalently a sum in the exponent—in equation (17) is generically
ultraviolet divergent. Let us deal with these problems in turn.

Zero modes If we have a pure scalar theory, all zero modes occur either in the
l = 0 or in the l = 1 determinant. The procedure to remove zero modes is equivalent
for the two cases so we focus on the latter, and refer to Appendix D.3 for the l = 0
case. For a single scalar, equation (22) with l = 1 gives

[
↑ω

2 ↑ d ↑ 1

r
ω +

(d ↑ 1)

r2
+ V

→→(ϑb)

]
ε
1
b
(r) = 0, (23)

which has the solution ε
1
b
(r) ↘ ωϑb(r). Note that the determinant indeed vanishes

since limr↑↓ ωϑb(r) = 0.
Formally one can remove these zero modes—which arise because the bounce breaks

the translation symmetry—by using collective coordinates [43, 46]. This means that
we re-express eigenfunctions that generate the symmetry as a coordinate shift for all
other eigenfunctions. Then, since everything is transitionally invariant, the integration
over all possible translations gives the d-dimensional volume V; we also have to include
a Jacobian factor, J , since we changed variables. Our job now is to find the value of
the determinant once zero modes have been removed.

To do this we follow [31,34,36,64] and deform the equation to

[
↑ω

2 ↑ d ↑ 1

r
ω +

(d ↑ 1)

r2
+ V

→→(ϑb) + k
2

]
ε
1,k
b

(r) = 0, (24)
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• Need to account for zero modes and renormalization

Theory prediction: homogenous 
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• Toy model of thermal seeded tunneling in d = 2 + 1

Figure 2: Snapshots of the 2D tunneling simulation with ω
2
0 > 0 for the

x (left) and y f(right) fields at di!erent moments: t → 0.3ε (upper row) and
t → 0.7ε (lower row). The first bubbles are nucleated at t → 0.3ε , which then
start filling the simulation box. At ε → 0.7ε one more bubble is nucleated,
this time in the negative ↑vx vacuum (we are here allowing domain walls in
the x field in the TV).

The prediction for the seeded nucleation rate per unit time and unit length
is given as

” = ϑDWe
→B/T

, (19)

where ϑDW is the wall tension

ϑDW =
2
↓
2

3
m

2
y

my

ϖ
(20)

(notice that the tension has mass dimension two in 2D). For this benchmark

5

• Nucleation rate per unit wall length estimated as:
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• Nucleation rate per unit wall length estimated as:

• How to properly calculate the rate taking into account 
the fluctuation determinant?

?

• Toy model of thermal seeded tunneling in d = 2 + 1

Theory prediction: seeded
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• Consider the  dimensionally-reduced theory on the domain walld = 1 + 1

Evaluating the expected number of bubbles we would then find → 10→2 sup-
pression, which actually matches the number of bubbles that we have ob-
served in the simulation.

Or in the other notation:

!T

ωDW · e
→B/T

→ 10→2 (37)

S1+1[ε0] =

∫
dzdt

{
1

2
(ϑµε0)

2
↑ Ṽ (ε0)

}
(38)

Ṽ (ε0) =
1

2
ϖ
2
ε
2
0 ↑

1

3!
c3ε

3
0 +

1

4!
ε
4
0 (39)

h
µ(x) = h(r)ε0(z, t) (40)

We should however notice that since our simulation considers the Higgs
as a real field with Z2 symmetry, the nucleation rate should be multiplied
by two given as it can tunnel to either positive or negative values. (The
generalization to an infinite number of equivalent vacua, such as for instance
in the case of a U(1) symmetry, is done in the BubbleDet paper: in that case
there is in fact a contribution coming from the determinant of the Goldstone
modes.)

4.1 Theory vs C++ simulation

Let us now compare the rate extracted from a series of simulations with
the same choice of parameters as before, with the theory prediction. The
results are shown in Fig. ??. The ratio B/T ranges from → 3 to → 9 from
T = 10 · 10→3 to T = 3 · 10→3. The rate is extracted from > 100 nucleation
events for all points by fitting an exponential survival probability for the
false vacuum, which seems to be established reasonably well for all the points
considered, see e.g. Fig. ?? right.

The nucleation rate is actually evaluated from the data by taking the
average of the nucleation times, as this is the estimator for an exponential
decay law, and by removing the earliest nucleation event:

!→1 = ↓t
i

nuc↔ ↑ Min(tinuc), (41)

in order to remove an initial o”set which may be due to the delay from the
nucleation of the bubble and the time at which the nucleation condition in
the algorithm is fulfilled, as well as other possible e”ects.
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Ṽ (ε0) =
1

2
ϖ
2
ε
2
0 ↑

1

3!
c3ε

3
0 +

1

4!
ε
4
0 (39)

h
µ(x) = h(r)ε0(z, t) (40)

We should however notice that since our simulation considers the Higgs
as a real field with Z2 symmetry, the nucleation rate should be multiplied
by two given as it can tunnel to either positive or negative values. (The
generalization to an infinite number of equivalent vacua, such as for instance
in the case of a U(1) symmetry, is done in the BubbleDet paper: in that case
there is in fact a contribution coming from the determinant of the Goldstone
modes.)

4.1 Theory vs C++ simulation

Let us now compare the rate extracted from a series of simulations with
the same choice of parameters as before, with the theory prediction. The
results are shown in Fig. ??. The ratio B/T ranges from → 3 to → 9 from
T = 10 · 10→3 to T = 3 · 10→3. The rate is extracted from > 100 nucleation
events for all points by fitting an exponential survival probability for the
false vacuum, which seems to be established reasonably well for all the points
considered, see e.g. Fig. ?? right.

The nucleation rate is actually evaluated from the data by taking the
average of the nucleation times, as this is the estimator for an exponential
decay law, and by removing the earliest nucleation event:

!→1 = ↓t
i

nuc↔ ↑ Min(tinuc), (41)

in order to remove an initial o”set which may be due to the delay from the
nucleation of the bubble and the time at which the nucleation condition in
the algorithm is fulfilled, as well as other possible e”ects.

8

z

Evaluating the expected number of bubbles we would then find → 10→2 sup-
pression, which actually matches the number of bubbles that we have ob-
served in the simulation.

Or in the other notation:

!T

ωDW · e
→B/T

→ 10→2 (37)

S1+1[ε0] =

∫
dzdt

{
1

2
(ϑµε0)

2
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Theory prediction: seeded

The 1+1 theory describes homogenous 
nucleation: we can apply standard results! 
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• Determinant around the bounce solution as*:

*Obtained from  in  result in Ekstedt, 
Gould, Hirvonen [2308.15652], JHEP

l = 1 d = 3

The new potential to take into account is then

V (ω) →
1

T
V (ω̃

↑

T ). (27)

The prefactor for our tunneling process is given by:

A = Adyn ↓ Astat. (28)

The dynamical part is related to the negative eingenvalue ε→ as

Adyn =
1

2ϑ





√

|ε→|+
ϖ
2

4
↔

ϖ

2



 . (29)

The statistical part reads

Astat =

(
(2ϑ)d/2→1

ω↑
1

d

ϱV

ϱω
(ωb(0))

)d/2

. (30)

The field value ω↑ is evaluated from the asymptotic form of the bounce
action

ω ↗ ωF + ω↑K(d/2↔ 1,mF r)(mF/r)
d/2→1

. (31)

Notice that this is the solution of the following ODE in d = 1:

↔u
↓↓ +m

2
Fu = 0, (32)

so that mF is the mass of the scalar field in the false vacuum, and

K(d/2↔ 1,mF r)(mF/r)
d/2→1 =

1

mF

e
→mF r

√
ϑ/2 (d = 1). (33)

It turns out that there is a trivial scaling with the temperature:

Astat(T ) =
Astat(T = 1)

↑
T

. (34)

For the benchmark of the previous section we find (ϖ = 1):

Adyn = 0.0030, Astat = 0.24. (35)

We can compare our prefactor from the one assumed in (19), namely the
domain wall tension:

AdynAstat

ςDW
= 1.1↓ 10→2

. (36)
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Theory prediction: seeded

z

Evaluating the expected number of bubbles we would then find → 10→2 sup-
pression, which actually matches the number of bubbles that we have ob-
served in the simulation.

Or in the other notation:

!T

ωDW · e
→B/T

→ 10→2 (37)

S1+1[ε0] =

∫
dzdt

{
1

2
(ϑµε0)

2
↑ Ṽ (ε0)

}
(38)

Ṽ (ε0) =
1

2
ϖ
2
ε
2
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3!
c3ε

3
0 +

1

4!
ε
4
0 (39)

h
µ(x) = h(r)ε0(z, t) (40)

We should however notice that since our simulation considers the Higgs
as a real field with Z2 symmetry, the nucleation rate should be multiplied
by two given as it can tunnel to either positive or negative values. (The
generalization to an infinite number of equivalent vacua, such as for instance
in the case of a U(1) symmetry, is done in the BubbleDet paper: in that case
there is in fact a contribution coming from the determinant of the Goldstone
modes.)

4.1 Theory vs C++ simulation

Let us now compare the rate extracted from a series of simulations with
the same choice of parameters as before, with the theory prediction. The
results are shown in Fig. ??. The ratio B/T ranges from → 3 to → 9 from
T = 10 · 10→3 to T = 3 · 10→3. The rate is extracted from > 100 nucleation
events for all points by fitting an exponential survival probability for the
false vacuum, which seems to be established reasonably well for all the points
considered, see e.g. Fig. ?? right.

The nucleation rate is actually evaluated from the data by taking the
average of the nucleation times, as this is the estimator for an exponential
decay law, and by removing the earliest nucleation event:

!→1 = ↓t
i

nuc↔ ↑ Min(tinuc), (41)

in order to remove an initial o”set which may be due to the delay from the
nucleation of the bubble and the time at which the nucleation condition in
the algorithm is fulfilled, as well as other possible e”ects.
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• Dynamical factor similarly obtained as

Negative eigenvalue for the 
growth of critical bubble

The new potential to take into account is then
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Figure 4: Estimates for log ω→ by directly fitting the asymptotic tail behavior, Equa-
tion (44), to points on the numerical critical bubble solution for the potential in Equa-
tion (45), and the result from BubbleDet with uncertainties. The right panel zooms in on
the region of the left pane in which the estimate is nearly constant.

for example the bounce profile is too short, the code resorts to a fail-safe algorithm,
which instead performs the fit at r =

→
r1/2rmax, where ωb(r1/2) = (ωF + ωT)/2 and

rmax is the largest radius. The error is then estimated by comparison to fits at radial
distances (r21/2rmax)1/3 and (r1/2r

2
max)

1/3.
In case the parameter log phi inf tol does not correctly reflect errors in the

bubble profile, the more sophisticated main method is run a second time but with
log phi inf tol modified to give at most the error of the fail-safe method. Together
with the first run of the main method and the fail-safe method, this gives three esti-
mates for log ω→, of which that with the least error is returned.

We refer to Appendix C.3 for a more detailed description of the fitting algorithm,
and for a discussion of the massless case, mF = 0.

4.4 Computing the negative eigenvalue

For thermal nucleation, the decay rate factorises into a product of statistical and dy-
namical parts, as is shown in equation (15). While the statistical part can be computed
through application of the Gelfand-Yaglom method, this is not so for the dynamical
part. In the latter, the negative eigenvalue of the Higgs operator OH(ωb) appears in
combination with the real-time damping rate. For computation of the negative eigen-
value, BubbleDet provides the function findNegativeEigenvalue().

The negative eigenvalue, ε↑ < 0, is defined by the following eigenvalue problem,
(

↑ϑ
2 ↑ d ↑ 1

r
ϑ + V

↓↓(ωb)

)
f(r) = ε↑f(r) , r ↓ (0, ↔) , (46)

where ϑf(r) ↗ 0 as r ↗ 0+ and f ↗ 0 as r ↗ ↔. Note, that here we have used the
information that the negative eigenmode is spherically symmetric, l = 0.

The eigenvalue problem can be approximated as a discrete matrix equation,

Mijfj = ε↑fi , i, j ↓ {1, . . . , N} . (47)

Here, the matrix M is a discretization of the linear di!erential operator in Eq. (46),
such that all of the rows (indices i) correspond to individual locations of r, and N is
the number of discrete points in the numerical critical bubble.

The code obtains a numerical estimate of the negative eigenvalue by passing M

to scipy.sparse.linalg.eigs. This estimate is then improved by an extrapolation:
The implemented derivatives, discussed below, are accurate to such an order that the

15

Theory prediction: seeded

z

Evaluating the expected number of bubbles we would then find → 10→2 sup-
pression, which actually matches the number of bubbles that we have ob-
served in the simulation.

Or in the other notation:

!T

ωDW · e
→B/T

→ 10→2 (37)

S1+1[ε0] =

∫
dzdt

{
1

2
(ϑµε0)

2
↑ Ṽ (ε0)

}
(38)

Ṽ (ε0) =
1

2
ϖ
2
ε
2
0 ↑

1

3!
c3ε

3
0 +

1

4!
ε
4
0 (39)

h
µ(x) = h(r)ε0(z, t) (40)

We should however notice that since our simulation considers the Higgs
as a real field with Z2 symmetry, the nucleation rate should be multiplied
by two given as it can tunnel to either positive or negative values. (The
generalization to an infinite number of equivalent vacua, such as for instance
in the case of a U(1) symmetry, is done in the BubbleDet paper: in that case
there is in fact a contribution coming from the determinant of the Goldstone
modes.)

4.1 Theory vs C++ simulation

Let us now compare the rate extracted from a series of simulations with
the same choice of parameters as before, with the theory prediction. The
results are shown in Fig. ??. The ratio B/T ranges from → 3 to → 9 from
T = 10 · 10→3 to T = 3 · 10→3. The rate is extracted from > 100 nucleation
events for all points by fitting an exponential survival probability for the
false vacuum, which seems to be established reasonably well for all the points
considered, see e.g. Fig. ?? right.

The nucleation rate is actually evaluated from the data by taking the
average of the nucleation times, as this is the estimator for an exponential
decay law, and by removing the earliest nucleation event:

!→1 = ↓t
i

nuc↔ ↑ Min(tinuc), (41)

in order to remove an initial o”set which may be due to the delay from the
nucleation of the bubble and the time at which the nucleation condition in
the algorithm is fulfilled, as well as other possible e”ects.
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points by fitting an exponential survival probability for the false vacuum,
which seems to be established reasonably well for all the points considered,
see e.g. Fig. 3 right.

The nucleation rate is actually evaluated from the data by taking the
average of the nucleation times, as this is the estimator for an exponential
decay law, and by removing the earliest nucleation event:

!→1 = ↑t
i

nuc↓ ↔ Min(tinuc), (38)

in order to remove an initial o”set which may be due to the delay from the
nucleation of the bubble and the time at which the nucleation condition in
the algorithm is fulfilled, as well as other possible e”ects.

5 Anisotropic model and counterterms

We here refer to [1] and discuss the introduction of appropriate counter-terms
to achieve the continuum limit for the nucleation rate.

• Why is the probabilistic suppression by far the dominant part in case
of weak supercooling? If this is the exponential exp (↔H/T ) it should
be more important for large supercooling.

8
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Figure 4: Left: Comparison with C++ rate: theory (solid) vs simulation
(dots). Right: exponential decay law for the false vacuum: data points
(orange) vs exponential fit (blue).

4.2 Statistical error

The life time of the false vacuum is taken by referring to the estimator given
by the average of the nucleation times (minus an o↵set parameter).

The way we will do this is by evaluating the variance of our estimator,
which for an exponential hypothesis implies the following estimate for the
standard deviation:

�⌧ =
⌧p
n
, (41)

where n is the number of events.

4.3 Check the volume dependence

10

Real-time simulation vs theory

(preliminary)
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QCD axion strings 
α(θ) : 0 → 2π

δ ≈ m−1
ρ

• Strings form at PQ phase transition

• String—wall network collapses

• Strings connected by axion 
domain walls

T

fa

QCD

Simone Blasi - GW BSM 4



QCD axion strings 
α(θ) : 0 → 2π

δ ≈ m−1
ρ

• Strings form at PQ phase transition

• String—wall network collapses

• Strings connected by axion 
domain walls

???

T

fa

QCD

Simone Blasi - GW BSM 4



QCD axion strings
• Global string solution

m−1
ρ

r

ρ(r)
fa

∝ [1 − (mρr)−2]

α(θ) : 0 → 2π

VPQ(Φ)

• Potential for PQ field

Φ = ρeiα

δ ≈ m−1
ρ
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QCD axion strings

• Consider the minimal KSVZ axion model with a Higgs portal:

cylindrical bubbles of true vacuum expanding radially from the string core, or the nucleation

of elongated bubbles nucleated along the string. This can drastically change the expected

gravitational wave signal (for instance due to the shape of the bubbles) as well as possible

predictions for baryogenesis (due to di↵erent regimes for the wall velocity).

Our results have been conveniently obtained within an e↵ective–field–theory approach

taking advantage of the hierarchy between the electroweak and the PQ scale, in which

the axion string is integrated out at tree level together with the heavy states of the PQ

sector. This allows us to obtain analytical results for the stability of the axion string,

as well as to provide a simpler picture of seeded nucleation around heavy defects. This

framework can be straightforwardly generalized to a richer electroweak scalar sector beyond

the simple deformation of the SM potential considered here, thus paving the way to new

phenomenological applications and interesting revisitations of (extensions of) the SM when

considered in combination with the axion solution to the strong CP problem.

Let us finally mention that while we have restricted our study to KSVZ–like models

where the Higgs is neutral under the PQ symmetry, we expect similar implications for

the electroweak phase transition also in DFSZ–like models where the Higgs doublets have

additional couplings with the string due to the non–zero PQ charge.

V = VPQ(|�|) + VEW(|H|;T ) + 

✓
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How do axion strings affect 
electroweak symmetry breaking?
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Figure 3. (Top panels) 2D projection of the radial mode energy ṡ
2 at the end of our 3D simulation investigating radial mode

emission around log(ms/H) ⇠ 6.5. The full simulation box, spanning ⇠1.5 Hubble lengths, is shown on the right with a detailed
view shown on the left. Axion strings stand out as bright closed loops with strong emissions in particular around kinks and
recent string re-connections. (Bottom panels) The same state of the string network but illustrated for the axion energy density
ȧ
2 instead of that of the radial mode. The axion emission has more support at long wavelengths relative to that of the radial

mode.

the radial mode mass itself (see also App. E). In contrast,
the lower panel shows the axion time derivative squared
(ȧ2) for the same state as in the left panel. The axion
radiation has support at longer wavelengths relative to
radial mode radiation. Thus while the high-curvature
region also produces significant axion radiation, the con-
trast versus the rest of the string regions is not as large.

To compute the energy densities more precisely we use
the fact that away from the string cores both the axions
and radial modes are free fields. At a given point x the
energy density of a real, free scalar field X, which solves

its classical equations of motion, is

⇢X(x) =
1

2
Ẋ

2 +
1

2
(rX)2 +

1

2
m

2

X
X

2

= Ẋ
2
,

(12)

where mX is the field’s mass and where we have applied
the equation of motion to arrive at the second line. This
implies that we can compute the average energy density
over the simulation box, ⇢X ⌘

1

L3

R
d
3
x⇢(x), by

⇢X =
1

L3

Z
d
3
xẊ

2(x) =
1

L3

Z
d
3
k

(2⇡)3
|
˜̇
X(k)|2 . (13)

Figure 4: Kinetic energy v2 in di↵erent simulation snapshots: t = 2.7/� (top left), 5.4/�

(top right), 10.8/� (bottom left) and 20.1/� (bottom right). We use box size L = 40vw/�,

weak transitions and vw = 0.8.

while grid spacing and various sources of viscosity will lead to exponential damping in the

UV. A detailed discussion of this e↵ect will be provided below. Accordingly, di↵erent box

sizes will facilitate the best measurements for the various physical observables. Also notice

that the power spectrum is generally reduced by finite size e↵ects in the IR and UV. The loss

of power in the UV corresponds to a reduction in the average kinetic energy which we study

in App. D. Extrapolating to very large grid size, we estimate that this leads to a reduction

of the momentum-integrated GW signal by about 20%.

– 14 –
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• Physics captured by electroweak scale EFT, SM + axion (or ALP):

and mh implies that the Higgs remains frozen at these scales. We may then describe the

e↵ect of the string as a localized Dirac–� potential. To this end we include an additional

potential term in the e↵ective theory of the form

Sr=✏ =

Z
d
4
xT (h2)�(2)(r � ✏), (8.4)

where T (h2) is a function of the Higgs field to be determined by the matching with the

UV theory. In the case of our simple Higgs portal model,

T (h2) = �2⇡

Z ✏

0
r dr

1

2
(⇢2B � f

2
a )h

2 +O(✏), (8.5)

where the only term in the potential that survives the limit of 1/✏ ⇠ m⇢ ! 1 is the portal

interaction with the string. The integral can be written as

T (h2) = ⇡


⌘
C(✏)h2, C(✏) = ⌘

Z ✏

0
rdr(f2

a � ⇢
2
B). (8.6)

The function C(✏) can be evaluated numerically. One finds for instance C ' 1.2 for

✏ = 2
p
2/m⇢. As we can see, the precise shape of the string profile at scales m⇢ does

not matter, and the overall strength of the interaction is encoded in the coe�cient of the

Dirac–� potential.

In summary our e↵ective action for the electroweak sector takes the form

SEFT[h] =

Z
d
4
x

⇢
1

2
(@µh)

2 � VEW(h)� 1

2



⌘
(@µ↵)

2
h
2 + ⇡



⌘
C(✏)�(2)(r � ✏)h2

�
. (8.7)

The role of the � potential is simply to impose the appropriate matching condition for the

Higgs field at r = ✏. Taking for example h = h(r), the equation of motion implies

✏h
0(✏) = �C(✏)



⌘
h(✏). (8.8)

Notice that this matching condition could be derived directly from the equations of motion

of the UV theory by performing the
R ✏
0 rdr integration of the Higgs equation.

Let us finally note that only the ratio /⌘ enters (8.7), and that the UV scale ✏ ⇠ 1/m⇢

enters only via the matching condition (8.8).

8.1 String profiles in the EFT

In this section we discuss how the Higgs profiles of Sec. ?? for string A and C can be

obtained within the e↵ective theory (8.7). String B is trivial in this regard as h ⌘ 0,

whereas its stability and implications for seeded tunneling will be discussed in Sec. ??.

String A and C solutions (when they exist) are characterized by a potentially large

Higgs core with h(0) � v which decreases at large distances. String C can also be seen

as a deformation of string B given that it asymptotes to the same vacuum B far from the

core. Both A and C profiles can be obtained by the Higgs equation of motion

h
00(r) +

h
0(r)

r
+



⌘

h
2(r)

r2
= V

0
EW(h) (8.9)

– 20 –

• Large hierarchy between the mass of the Higgs and the PQ radial mode

EFT with heavy defects
Simone Blasi - GW BSM 4



EFT with heavy defects
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e↵ect of the string as a localized Dirac–� potential. To this end we include an additional

potential term in the e↵ective theory of the form

Sr=✏ =

Z
d
4
xT (h2)�(2)(r � ✏), (8.4)

where T (h2) is a function of the Higgs field to be determined by the matching with the

UV theory. In the case of our simple Higgs portal model,

T (h2) = �2⇡

Z ✏

0
r dr

1

2
(⇢2B � f

2
a )h

2 +O(✏), (8.5)

where the only term in the potential that survives the limit of 1/✏ ⇠ m⇢ ! 1 is the portal

interaction with the string. The integral can be written as

T (h2) = ⇡


⌘
C(✏)h2, C(✏) = ⌘

Z ✏

0
rdr(f2

a � ⇢
2
B). (8.6)

The function C(✏) can be evaluated numerically. One finds for instance C ' 1.2 for
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2/m⇢. As we can see, the precise shape of the string profile at scales m⇢ does

not matter, and the overall strength of the interaction is encoded in the coe�cient of the
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• -potential imposes UV 
matching condition:
δ

cylindrical bubbles of true vacuum expanding radially from the string core, or the nucleation

of elongated bubbles nucleated along the string. This can drastically change the expected

gravitational wave signal (for instance due to the shape of the bubbles) as well as possible

predictions for baryogenesis (due to di↵erent regimes for the wall velocity).

Our results have been conveniently obtained within an e↵ective–field–theory approach

taking advantage of the hierarchy between the electroweak and the PQ scale, in which

the axion string is integrated out at tree level together with the heavy states of the PQ

sector. This allows us to obtain analytical results for the stability of the axion string,

as well as to provide a simpler picture of seeded nucleation around heavy defects. This

framework can be straightforwardly generalized to a richer electroweak scalar sector beyond

the simple deformation of the SM potential considered here, thus paving the way to new

phenomenological applications and interesting revisitations of (extensions of) the SM when

considered in combination with the axion solution to the strong CP problem.

Let us finally mention that while we have restricted our study to KSVZ–like models

where the Higgs is neutral under the PQ symmetry, we expect similar implications for

the electroweak phase transition also in DFSZ–like models where the Higgs doublets have

additional couplings with the string due to the non–zero PQ charge.

V = VPQ(|�|) + VEW(|H|;T ) + 

✓
|�|2 � f2

a

2

◆✓
|H|2 � v2

2

◆
, (6.1)

✏ ⇠ 1/m⇢ ↵ = ✓ ) @µ↵ = 1/r (6.2)
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Two possibilities

α(θ) : 0 → 2π

δ ≈ m−1
ρ

Axion strings can form a Higgs core at T ≫ 102 GeV

δ ≈ m−1
h

→h↑ ↓ v (86)

34

Axion strings can trigger bubble nucleation 

δ ≈ m−1
h

δ ≈ m−1
ρ

2. Move to DFVZ models, here the PQ charge of the Higgs fields has to
give something di!erent.

3. Implications of the defects having a Higgs core possibly at very high
energies: superconductivity? Accumulating baryon number? When
strings or walls intersect/exchange partners, do they form some winding
of the Higgs/gauge fields? (perhaps windings should be formed also
during the formation of the core but this seems too much second order).
Notice that this large Higgs core would persist also after the EWPT.
Does it a!ect the axion domain wall formation for instance, or anything
else?

4. Another intriguing implication could be the interaction between EW
bubbles nucleated outside of the defects and the defects with or without
some core. For this scenario it would be interesting to think of the case
with ”ω < 0”, in the sense that the defect actually prevents the Higgs
to get a vev. Can an EW bubble wall cross the defect or will it just
push it?

5. Clearly again one can thing of implications of having a vanishing Higgs
vev inside the defect below the EW scale. Can one use sphalerons
to produce the baryon asymmetry? Or actually does this wash out
a previously created baryon number? Does it again a!ect something
regarding axion domain wall formation?

16.4 Nucleation of holes inside axion walls

Here I have the feeling that people evaluate the rate by just using the
thin wall, is there a better way to do the calculation? I think I can do
it with the KK. It is a nice calculation I believe, and it would be the
generalization of the thin wall.

16.5 Notes

” =
1
→
2
(ε(x) + fa)e

ia(x)/fa (83)

SU(2)L ↑ U(1)Y ↓ U(1)em (84)

↔h↗ ↘= 0 (85)

33

 SM + PQ First order EWPT + PQ
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FOPT + PQ
• Consider first order EWPT with false vacuum B metastable at T = 0

time of the EW phase transition. It is hence an important to study of the presence of the

QCD axion strings can modify the EW phase transition, both in the case in which the EW

sector is the simple mexican-hat of the SM, and as well as new physics imply an EW sector

with a first order phase transition. Examples of the latter case include the Higgs-Singlet,

the Two Higgs doublet model, and many other BSM theories (see, e.g. [12–16]) .

A portal interaction between the PQ sector and the EW sector is certainly present in

the UV theory since it is not protected by any symmetry, implying an e↵ective coupling

between the Higgs field and the QCD strings. As we will show, depending on the size of

this coupling, the QCD axion strings can significantly a↵ect the EW phase transition.

Previous studies have highlighted the importance of considering impurities and their

impact on the electroweak phase transition and on cosmological phase transitions in general

[17–52]. In particular, the case of cosmic strings has been previously investigated in [22,

23, 29, 30, 38].

2 Setup

Our setup consists of a complex scalar field � charged under a global U(1) Peccei–Quinn

symmetry coupled to the scalar sector of the Standard Model via a portal interaction of

coupling strength . This portal may be thought of as being e↵ectively generated from

loops of the KSVZ fermions, or it could be present in the theory already at the tree level.

The Lagrangian of the theory reads

L = @µ�@
µ�⇤ +

1

2
@µh@

µh� VPQ(|�|)� VEW(h;T )� 

✓
|�|2 � f2

a

2

◆
(h2 � v2) (2.1)

and we only consider scenarios with  > 0. Here VPQ is the potential responsible for the

PQ symmetry breaking,

VPQ = �m2|�|2 + ⌘|�|4, (2.2)

where

� =
1p
2
⇢(x)ei↵(x), (2.3)

In (2.1) VEW(h) is the potential energy of the Higgs sector, with the Higgs doublet such

that hHi = (0, h/
p
2), and we have included temperature corrections only in the purely EW

part of the potential as we will be only considering temperatures below fa. For the moment

we leave VEW unspecified, as we will be interested in two di↵erent scenarios depending on

the electroweak phase transition (EWPT) being first or second order. The structure of the

portal interaction is chosen such that at T = 0 the true vacuum of the theory is where

h = v and the axion decay constant is fa.

We assume a post-inflationary PQ breaking scenario entailing the formation of axion

strings at high temperatures. Our focus will be the impact of the QCD axion strings in the

cosmological history of the EW sector, depending on the size of the portal interaction .

We anticipate that the relevant quantities for our analysis are actually the dimensionless

ratio /⌘ and m⇢/mh, where m⇢ is the mass of the radial mode of the PQ field.
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The portal coupling  is essentially a free parameter of the model. On the other

hand, this portal is unavoidably generated by loops of the KSVZ fermions responsible

for the mixed PQ-QCD anomaly. In particular, for KSVZ fermions coupled to the PQ

field with a yukawa interaction y = M /fa and to the SM only via QCD, the portal

with the Higgs arises by a three-loop diagram involving tops, which can estimated as

rad ⇠ 10�5(M /fa)2. If the KSVZ fermions have some mixing sin ✓ with the SM in order

to allow them to decay, of the form y� ̄t, then the contribution to the portal is at one

loop and scales as rad ⇠ 10�2 sin2 ✓ [AM: Actually here there is some assumption, maybe

not needed] Depending on the specific UV completion, there could be other contributions

to the coupling. In the following we will treat  as a free parameter.

2.1 Scalar potential and its extrema

In this paper we will consider two possible scenarios for the EW sector:

• In the first case we stick to the SM potential, including leading thermal corrections

in the high-T expansion:

VEW = VSM ⌘ VEW(h;T ) = �1

2

�
µ2 � chT

2
�
h2 +

1

4
�h4 (2.4)

where ch ' 0.393.. in the SM. Here the critical temperature Tc is defined as the

temperature at which the Higgs mass is vanishing.

• In the second case, we take an EW potential which serves as a benchmark for scenarios

with first order EW phase transitions, where there is a barrier between the EW

preserving minimum and the EW breaking vacuum at all temperatures:

VEW = V� ⌘ VEW(h;T ) = �1

2

�
µ2 � chT

2
�
h2 +

�

3

m2
h

v2
h3 +

1

4
�h4 (2.5)

We consider the same ch as in the SM for definiteness, and � < 0 determines the

barrier height (this case reduces to the SM potential for � = 0). For a given value of

�, the other parameters are chosen to reproduce the Higgs mass and vev

µ2 =
m2

h

2
(1 + �) � =

m2
h

2v2
(1� �) (2.6)

In this model Tc identifies the temperature where the two minima are degenerate.

We will chose regimes of couplings such that at T = 0 there is a global minimum where

the electroweak and PQ symmetries are spontaneously broken, with scales v = 246 GeV

and fa respectively. This point remains the global minimum of the scalar potential up to

a critical temperature Tc, and is defined as

A :

✓
⇢ =

r
f2
a +



⌘
(v2 � v2(T )), h = v(T )

◆
(2.7)

where v(T = 0) = v. For T > Tc the point A becomes either a local minimum or a saddle,

while the global minimum is

B :

✓
⇢ =

r
f2
a +



⌘
v2 ⌘ f̃a, h = 0

◆
(2.8)
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• Consider first order EWPT with false vacuum B metastable at  T = 0

time of the EW phase transition. It is hence an important to study of the presence of the

QCD axion strings can modify the EW phase transition, both in the case in which the EW

sector is the simple mexican-hat of the SM, and as well as new physics imply an EW sector

with a first order phase transition. Examples of the latter case include the Higgs-Singlet,

the Two Higgs doublet model, and many other BSM theories (see, e.g. [12–16]) .

A portal interaction between the PQ sector and the EW sector is certainly present in

the UV theory since it is not protected by any symmetry, implying an e↵ective coupling

between the Higgs field and the QCD strings. As we will show, depending on the size of

this coupling, the QCD axion strings can significantly a↵ect the EW phase transition.

Previous studies have highlighted the importance of considering impurities and their

impact on the electroweak phase transition and on cosmological phase transitions in general

[17–52]. In particular, the case of cosmic strings has been previously investigated in [22,

23, 29, 30, 38].

2 Setup

Our setup consists of a complex scalar field � charged under a global U(1) Peccei–Quinn

symmetry coupled to the scalar sector of the Standard Model via a portal interaction of

coupling strength . This portal may be thought of as being e↵ectively generated from

loops of the KSVZ fermions, or it could be present in the theory already at the tree level.

The Lagrangian of the theory reads

L = @µ�@
µ�⇤ +

1

2
@µh@

µh� VPQ(|�|)� VEW(h;T )� 

✓
|�|2 � f2

a

2

◆
(h2 � v2) (2.1)

and we only consider scenarios with  > 0. Here VPQ is the potential responsible for the

PQ symmetry breaking,

VPQ = �m2|�|2 + ⌘|�|4, (2.2)

where

� =
1p
2
⇢(x)ei↵(x), (2.3)

In (2.1) VEW(h) is the potential energy of the Higgs sector, with the Higgs doublet such

that hHi = (0, h/
p
2), and we have included temperature corrections only in the purely EW

part of the potential as we will be only considering temperatures below fa. For the moment

we leave VEW unspecified, as we will be interested in two di↵erent scenarios depending on

the electroweak phase transition (EWPT) being first or second order. The structure of the

portal interaction is chosen such that at T = 0 the true vacuum of the theory is where

h = v and the axion decay constant is fa.

We assume a post-inflationary PQ breaking scenario entailing the formation of axion

strings at high temperatures. Our focus will be the impact of the QCD axion strings in the

cosmological history of the EW sector, depending on the size of the portal interaction .

We anticipate that the relevant quantities for our analysis are actually the dimensionless

ratio /⌘ and m⇢/mh, where m⇢ is the mass of the radial mode of the PQ field.

– 2 –

time of the EW phase transition. It is hence an important to study of the presence of the

QCD axion strings can modify the EW phase transition, both in the case in which the EW

sector is the simple mexican-hat of the SM, and as well as new physics imply an EW sector

with a first order phase transition. Examples of the latter case include the Higgs-Singlet,

the Two Higgs doublet model, and many other BSM theories (see, e.g. [12–16]) .

A portal interaction between the PQ sector and the EW sector is certainly present in

the UV theory since it is not protected by any symmetry, implying an e↵ective coupling

between the Higgs field and the QCD strings. As we will show, depending on the size of

this coupling, the QCD axion strings can significantly a↵ect the EW phase transition.

Previous studies have highlighted the importance of considering impurities and their

impact on the electroweak phase transition and on cosmological phase transitions in general

[17–52]. In particular, the case of cosmic strings has been previously investigated in [22,

23, 29, 30, 38].

2 Setup

Our setup consists of a complex scalar field � charged under a global U(1) Peccei–Quinn

symmetry coupled to the scalar sector of the Standard Model via a portal interaction of

coupling strength . This portal may be thought of as being e↵ectively generated from

loops of the KSVZ fermions, or it could be present in the theory already at the tree level.

The Lagrangian of the theory reads

L = @µ�@
µ�⇤ +

1

2
@µh@

µh� VPQ(|�|)� VEW(h;T )� 

✓
|�|2 � f2

a

2

◆
(h2 � v2) (2.1)

and we only consider scenarios with  > 0. Here VPQ is the potential responsible for the

PQ symmetry breaking,

VPQ = �m2|�|2 + ⌘|�|4, (2.2)

where

� =
1p
2
⇢(x)ei↵(x), (2.3)

In (2.1) VEW(h) is the potential energy of the Higgs sector, with the Higgs doublet such

that hHi = (0, h/
p
2), and we have included temperature corrections only in the purely EW

part of the potential as we will be only considering temperatures below fa. For the moment

we leave VEW unspecified, as we will be interested in two di↵erent scenarios depending on

the electroweak phase transition (EWPT) being first or second order. The structure of the

portal interaction is chosen such that at T = 0 the true vacuum of the theory is where

h = v and the axion decay constant is fa.

We assume a post-inflationary PQ breaking scenario entailing the formation of axion

strings at high temperatures. Our focus will be the impact of the QCD axion strings in the

cosmological history of the EW sector, depending on the size of the portal interaction .

We anticipate that the relevant quantities for our analysis are actually the dimensionless

ratio /⌘ and m⇢/mh, where m⇢ is the mass of the radial mode of the PQ field.

– 2 –

The portal coupling  is essentially a free parameter of the model. On the other

hand, this portal is unavoidably generated by loops of the KSVZ fermions responsible

for the mixed PQ-QCD anomaly. In particular, for KSVZ fermions coupled to the PQ

field with a yukawa interaction y = M /fa and to the SM only via QCD, the portal

with the Higgs arises by a three-loop diagram involving tops, which can estimated as

rad ⇠ 10�5(M /fa)2. If the KSVZ fermions have some mixing sin ✓ with the SM in order

to allow them to decay, of the form y� ̄t, then the contribution to the portal is at one

loop and scales as rad ⇠ 10�2 sin2 ✓ [AM: Actually here there is some assumption, maybe

not needed] Depending on the specific UV completion, there could be other contributions

to the coupling. In the following we will treat  as a free parameter.

2.1 Scalar potential and its extrema

In this paper we will consider two possible scenarios for the EW sector:

• In the first case we stick to the SM potential, including leading thermal corrections

in the high-T expansion:

VEW = VSM ⌘ VEW(h;T ) = �1

2

�
µ2 � chT

2
�
h2 +

1

4
�h4 (2.4)

where ch ' 0.393.. in the SM. Here the critical temperature Tc is defined as the

temperature at which the Higgs mass is vanishing.

• In the second case, we take an EW potential which serves as a benchmark for scenarios

with first order EW phase transitions, where there is a barrier between the EW

preserving minimum and the EW breaking vacuum at all temperatures:

VEW = V� ⌘ VEW(h;T ) = �1

2

�
µ2 � chT

2
�
h2 +

�

3

m2
h

v2
h3 +

1

4
�h4 (2.5)

We consider the same ch as in the SM for definiteness, and � < 0 determines the

barrier height (this case reduces to the SM potential for � = 0). For a given value of

�, the other parameters are chosen to reproduce the Higgs mass and vev

µ2 =
m2

h

2
(1 + �) � =

m2
h

2v2
(1� �) (2.6)

In this model Tc identifies the temperature where the two minima are degenerate.

We will chose regimes of couplings such that at T = 0 there is a global minimum where

the electroweak and PQ symmetries are spontaneously broken, with scales v = 246 GeV

and fa respectively. This point remains the global minimum of the scalar potential up to

a critical temperature Tc, and is defined as

A :

✓
⇢ =

r
f2
a +



⌘
(v2 � v2(T )), h = v(T )

◆
(2.7)

where v(T = 0) = v. For T > Tc the point A becomes either a local minimum or a saddle,

while the global minimum is

B :

✓
⇢ =

r
f2
a +



⌘
v2 ⌘ f̃a, h = 0

◆
(2.8)
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See also Yajnik, PRD (1986)
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5.3.1 Results for the string seeded tunneling

With all the previously introduced computational tools, we now show some results for

the tunneling seeded by the axion string. We considered a benchmark with a moderate

hierarchy between mh and m⇢ so that numerical routines are stable, but the qualitative

conclusions will be generic. We study the e↵ect of the axion string on the EW phase

transition as a function of the ratio /⌘, focusing on region I and II in Figure 4.

First, in Figure 6 (left) we show the bounce action for the seeded phase transition,

computed with the three di↵erent methods illustrated above, in the respective regime of

validity. We see that the three methods nicely complement each other in providing the

complete picture of the seeded bounce action. In the same plot, we indicate the value of

the action for the homogeneous tunneling. We selected as representative temperature the

value T ' 35 GeV where the homogeneous tunneling rate is maximal. In the shape of

S/T as a function of /⌘ we recover the features of the exponential decoupling which we

have already illustrated in Figure 3. For /⌘ . 0.15, the seeded nucleation is very fast

and catalyzes e�ciently the EW phase transition. When reducing /⌘ the axion string

decouples exponentially and for /⌘ < 10�2 it cannot influence anymore the EW phase

transition.

In Figure 6 we display the bounce actions as a function of the temperature. In orange

is reported the homogeneous bounce action, which is too suppressed to lead to successful

nucleation. On the contrary, on the selected benchmark for /⌘, the seeded tunneling rate

is large enough to satisfy the nucleation condition in (5.3) and to lead to a seeded phase

transition into the EW breaking vacuum at T/Tc ' 0.45.

50

100

150

200

�

Figure 6: ...

In order to characterize the feature of the seeded phase transition, we can further

inspect the shape of the nucleated bubble on the axion string focusing on the benchmarked

star of Figure 6. In Figure 7 (left) we show the bubble profile of the Higgs field, which

clearly develops on top of the string core (illustrated as a grey band in the center of the

bubble). The Higgs is zero far from the string, and it develops a non vanishing expectation

value in the bubble. Note that the bubble has a non spherical shape, elongated along the

string direction. In addition, note that the value of the Higgs field close to the center of

– 19 –

Too slow

Nucleation

FOPT + PQ

Figure 1: Three–dimensional representation of a critical bubble of broken electroweak

symmetry seeded by the QCD axion string. The string is shown in red, and it is taken to

be straight and aligned with the vertical z direction. The Higgs bubble in green is nucleated

around the string with a non–spherical shape, corresponding to the surface where the Higgs

field is h(r, z) ⇠ 25GeV for illustration purposes. Detailed information is given in Sec. 5.3.

Let us also mention that, as one expects a large hierarchy between the EW scale and

the PQ scale, our analysis will be based on an e↵ective field theory (EFT) for the Higgs field

where the heavy degrees of freedom (including the basic axion string) are integrated out 3.

Our EFT matches the known results for the SM + axion (or ALP) EFT, see e.g. [74–76],

but additionally allows to take into account the presence of the axion string in a simple way.

We will also comment on how the relevance of the di↵erent higher–dimensional operators in

the ALP EFT is modified in the string background. We believe that our approach provides

an e�cient framework to study the dynamics of EW–scale states coupled to strings of large

tension, which can be applied to many extensions of the SM.

This paper is organized as follows. In Sec. 2 we introduce our Lagrangian and comment

on the di↵erent realizations depending on whether the EW phase transition is first order

or not. We also present a brief overview of the possible QCD axion string solutions allowed

by the model. In Sec. 3 we derive the EFT for the Higgs field in the string background,

and carry out the relevant computations that are needed to study the thermal history of

the Higgs sector. This is discussed in detail in Sec. 4 for the minimal SM + PQ scenario,

and in Sec. 5 for a model with a first order EW phase transition. We conclude in Sec. 6.

2 Setup

Our setup consists of a complex scalar field � charged under a global U(1) Peccei–Quinn

symmetry coupled to the scalar sector of the Standard Model via a portal interaction of

3
See [72, 73] for a similar approach in the context of branes and strings with fluxes.
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DFSZ QCD axion strings

• Consider the DFSZ model where two Higgs doublets share a PQ charge:

2 Setup

The EFT for KSVZ and DFSZ axion models have been derived [3].

The Lagragian of our model is

L = |ωµS|2 + |DµH1|2 + |DµH2|2 → VS(|S|)→ VEW(H1, H2)→
(
εS2H†

1H2 + h.c.
)
. (2.1)

The potential for H1 and H2 is invariant for arbitrary global rephasings of both Higgses.

The full potential is given by

VEW = m2
11H

†
1H1 +m2

22H
†
2H2 +

ϑ1

2

(
H†

1H1

)2
+

ϑ2

2

(
H†

2H2

)2
(2.2)

+ ϑ3

(
H†

1H1

)(
H†

2H2

)
+ ϑ4

(
H†

1H2

)(
H†

2H1

)
, (2.3)

VS = →m2
S |S|2 + ϑS |S|4, (2.4)

Vmix =
(
εS2H†

1H2 + h.c.
)
+ ε1S |S|2|H1|2 + ε2S |S|2|H2|2, (2.5)

The rotation that removes the axion from the portal coupling can be rewritten as [4]

H ↑ e→iωHeiωc2ωε3 , (2.6)

where the bi–doublet is defined as:

H = (iϖ2H
↑
1 , H2). (2.7)

This will change the kinetic term of the Higgses as

Tr |DµH|2 ↑ Tr |Dµe
→iωHeiωc2ωε3 |2. (2.8)

It is a non–trivial exercise to show how the axion couples to the gauge bosons and/or the

Higgses from the covariant derivative. We expect that the axion does not mix with the

gauge bosons, but only to some |H|2 combination.

The observation we want to make is the following: from the kinetic term it seems that

the Higgs will couple to the axion with a strength that is independent of ε. In other words,

it is not clear how the decoupling between the higgs and the axion takes place when ε ↑ 0.

What we notice however, is that in this limit the A0 boson of the 2HDM becomes massless

(as in the original visible axion model). In this case we presume that the Higgs bi-doublet

can be rewritten in a way that makes the Goldstone nature of A0 apparent:

H = e→iA
0
/vH↓eiA

0
/vc2ωε3 (2.9)

where H↓ does not contain the A0 degree of freedom. Then, one can see that if this is

the case the A0 only enters the Lagrangian in the combination A0 + ϱ, such that a field

redefinition will make the Higgs doublets couple only to A0 (which is now a visible axion),

and not to the invisible axion, as expected in the decoupling limit.

This exercise was intended to show that there could be possible cancellations between

the axion and A0 also at finite values of ε. It is still unclear how these cancellations take

– 2 –

U(1) symmetry with 
massless A0

ξ ∼ 1

H−1

H1, H2

How does a non-zero  affect EWSB?κ

SB, Y. Hamada, in prep.
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DFSZ QCD axion strings

• Consider a toy model with PQ scalar + complex Higgs, in the string background:

The solution inside the bubble should then be

ωh(x < Rc) = v

∫

|x→|<Rc

d3x→ e
↑m|x↑x

→|

4ε|x→ x→
|
ϑ2(r→) cos(2ϖ→). (43)

where we have used that the source vanishes outside of the bubble. Notice
that because of the multi–dimensional integration this integral is well defined.

Let us now look at the equation for the phase. We have with the same
thin–wall approximation that:

!ωϱ→ = 2ϑ2 sin (2ϖ). (44)

This leads immediately to

ωϱ→ = 2

∫

|x→|<Rc

d3x→ 1

4ε|x→ x→
|
ϑ2(r→) sin (2ϖ→). (45)

1.5 The PQ string as a source

Let us now consider the case of a PQ string which acts as a source, namely
it is non–dynamical both for what concerns the radial mode and the phase.
Let us notice that from our previous analysis we actually expect some back-
reaction on the string itself at the same order in the small portal ς expansion,
so the result of the full dynamical model and the background case considered
here may not be equivalent.

However, we are motivated to consider this scenario first as we can make
contact with the explicit numerical solution of the equations of motion.

The Lagrangian for the background case is

L =
1

2
(φµh)

2 +
1

2
h2(φµϱ)

2
→ VEW(h) +

1

2
ς ϑ2(r)h2 cos (2ϖ + 2ϱ), (46)

where ϖ is the angle around the string on the z axis, r is the radial coordinate
on the orthogonal plane, and ϑ(r) is the un-perturbed string profile.

The equations of motion for the Higgs field are then

!h = h(φµϱ)
2
→ V →

EW(h) + ςh ϑ2(r) cos(2ϖ + 2ϱ), (47)

and
φµ(h

2φµϱ) = →ςh2 ϑ2(r) sin(2ϖ + 2ϱ). (48)

Let us now expand around the un-perturbed critical bubble for the Higgs,

h = h(R) + ς ωh, ϱ = c+ ς ωϱ, (49)

7

time of the EW phase transition. It is hence an important to study of the presence of the

QCD axion strings can modify the EW phase transition, both in the case in which the EW

sector is the simple mexican-hat of the SM, and as well as new physics imply an EW sector

with a first order phase transition. Examples of the latter case include the Higgs-Singlet,

the Two Higgs doublet model, and many other BSM theories (see, e.g. [12–16]) .

A portal interaction between the PQ sector and the EW sector is certainly present in

the UV theory since it is not protected by any symmetry, implying an e↵ective coupling

between the Higgs field and the QCD strings. As we will show, depending on the size of

this coupling, the QCD axion strings can significantly a↵ect the EW phase transition.

Previous studies have highlighted the importance of considering impurities and their

impact on the electroweak phase transition and on cosmological phase transitions in general

[17–52]. In particular, the case of cosmic strings has been previously investigated in [22,

23, 29, 30, 38].

2 Setup

Our setup consists of a complex scalar field � charged under a global U(1) Peccei–Quinn

symmetry coupled to the scalar sector of the Standard Model via a portal interaction of

coupling strength . This portal may be thought of as being e↵ectively generated from

loops of the KSVZ fermions, or it could be present in the theory already at the tree level.

The Lagrangian of the theory reads

L = @µ�@
µ�⇤ +

1

2
@µh@

µh� VPQ(|�|)� VEW(h;T )� 

✓
|�|2 � f2

a

2

◆
(h2 � v2) (2.1)

and we only consider scenarios with  > 0. Here VPQ is the potential responsible for the

PQ symmetry breaking,

VPQ = �m2|�|2 + ⌘|�|4, (2.2)

where

� =
1p
2
⇢(x)ei↵(x), (2.3)

In (2.1) VEW(h) is the potential energy of the Higgs sector, with the Higgs doublet such

that hHi = (0, h/
p
2), and we have included temperature corrections only in the purely EW

part of the potential as we will be only considering temperatures below fa. For the moment

we leave VEW unspecified, as we will be interested in two di↵erent scenarios depending on

the electroweak phase transition (EWPT) being first or second order. The structure of the

portal interaction is chosen such that at T = 0 the true vacuum of the theory is where

h = v and the axion decay constant is fa.

We assume a post-inflationary PQ breaking scenario entailing the formation of axion

strings at high temperatures. Our focus will be the impact of the QCD axion strings in the

cosmological history of the EW sector, depending on the size of the portal interaction .

We anticipate that the relevant quantities for our analysis are actually the dimensionless

ratio /⌘ and m⇢/mh, where m⇢ is the mass of the radial mode of the PQ field.
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The solution inside the bubble should then be

ωh(x < Rc) = v

∫

|x→|<Rc

d3x→ e
↑m|x↑x

→|

4ε|x→ x→
|
ϑ2(r→) cos(2ϖ→). (43)

where we have used that the source vanishes outside of the bubble. Notice
that because of the multi–dimensional integration this integral is well defined.

Let us now look at the equation for the phase. We have with the same
thin–wall approximation that:

!ωϱ→ = 2ϑ2 sin (2ϖ). (44)

This leads immediately to

ωϱ→ = 2

∫

|x→|<Rc

d3x→ 1

4ε|x→ x→
|
ϑ2(r→) sin (2ϖ→). (45)

1.5 The PQ string as a source

Let us now consider the case of a PQ string which acts as a source, namely
it is non–dynamical both for what concerns the radial mode and the phase.
Let us notice that from our previous analysis we actually expect some back-
reaction on the string itself at the same order in the small portal ς expansion,
so the result of the full dynamical model and the background case considered
here may not be equivalent.

However, we are motivated to consider this scenario first as we can make
contact with the explicit numerical solution of the equations of motion.

The Lagrangian for the background case is

L =
1

2
(φµh)

2 +
1

2
h2(φµϱ)

2
→ VEW(h) +

1

2
ς ϑ2(r)h2 cos (2ϖ + 2ϱ), (46)

where ϖ is the angle around the string on the z axis, r is the radial coordinate
on the orthogonal plane, and ϑ(r) is the un-perturbed string profile.

The equations of motion for the Higgs field are then

!h = h(φµϱ)
2
→ V →

EW(h) + ςh ϑ2(r) cos(2ϖ + 2ϱ), (47)

and
φµ(h

2φµϱ) = →ςh2 ϑ2(r) sin(2ϖ + 2ϱ). (48)

Let us now expand around the un-perturbed critical bubble for the Higgs,

h = h(R) + ς ωh, ϱ = c+ ς ωϱ, (49)
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The solution inside the bubble should then be

ωh(x < Rc) = v

∫

|x→|<Rc

d3x→ e
↑m|x↑x

→|

4ε|x→ x→
|
ϑ2(r→) cos(2ϖ→). (43)

where we have used that the source vanishes outside of the bubble. Notice
that because of the multi–dimensional integration this integral is well defined.

Let us now look at the equation for the phase. We have with the same
thin–wall approximation that:

!ωϱ→ = 2ϑ2 sin (2ϖ). (44)

This leads immediately to

ωϱ→ = 2

∫

|x→|<Rc

d3x→ 1

4ε|x→ x→
|
ϑ2(r→) sin (2ϖ→). (45)

1.5 The PQ string as a source

Let us now consider the case of a PQ string which acts as a source, namely
it is non–dynamical both for what concerns the radial mode and the phase.
Let us notice that from our previous analysis we actually expect some back-
reaction on the string itself at the same order in the small portal ς expansion,
so the result of the full dynamical model and the background case considered
here may not be equivalent.

The string background is:

S =
1
↑
2
ϑ(r)eiω (46)

However, we are motivated to consider this scenario first as we can make
contact with the explicit numerical solution of the equations of motion.

The Lagrangian for the background case is

L =
1

2
(φµh)

2 +
1

2
h2(φµϱ)

2
→ VEW(h) +

1

2
ς ϑ2(r)h2 cos (2ϖ + 2ϱ), (47)

where ϖ is the angle around the string on the z axis, r is the radial coordinate
on the orthogonal plane, and ϑ(r) is the un-perturbed string profile.

The equations of motion for the Higgs field are then

!h = h(φµϱ)
2
→ V →

EW(h) + ςh ϑ2(r) cos(2ϖ + 2ϱ), (48)

and
φµ(h

2φµϱ) = →ςh2 ϑ2(r) sin(2ϖ + 2ϱ). (49)

7

PQ:

DSFZ toy model

Simone
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1 Lagrangian

Parameterizing

! =
1
→
2
ωeia (1)

and

ε =
1
→
2
heiω (2)

the Lagrangian becomes

L =
1

2
(ϑµh)

2+
1

2
h2(ϑµϖ)

2+
1

2
(ϑµω)

2+
1

2
ω2(ϑµa)

2
↑VPQ(ω)↑VEW(h)+

1

2
ϱ ω2h2 cos (2a+2ϖ).

(3)
As we can see, there is a combination of the fields that remains always mass-
less. We then define:

ϖ→ = a+ ϖ, a→ = a↑ ϖ. (4)

so that

ϖ =
1

2
(ϖ→

↑ a→), a =
1

2
(ϖ→ + a→). (5)

In terms of these new fields the Lagrangian becomes,

Lε =
1

2
(ϑµh)

2+
1

2
(ϑµω)

2+
1

8
(h2+ω2)

[
(ϑµϖ

→)2 + (ϑµa
→)2

]
+
1

4
(ω2↑h2)ϑµϖ

→ϑµa→,

(6)
and a potential part which does not contain a→:

LV = ↑VPQ(ω)↑ VEW(h) +
1

2
ϱ ω2h2 cos (2ϖ→). (7)

1

Higgs:
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DFSZ QCD axion strings

• Consider  and perturb around the homogeneous, spherical, solution:κ ≪ 1

4.3 The PQ string as a source

Let us now consider the case of a PQ string which acts as a source, namely it is non–

dynamical both for what concerns the radial mode and the phase. Let us notice that from

our previous analysis we actually expect some back-reaction on the string itself at the same

order in the small portal ω expansion, so the result of the full dynamical model and the

background case considered here may not be equivalent.

However, we are motivated to consider this scenario first as we can make contact with

the explicit numerical solution of the equations of motion.

The Lagrangian for the background case is

L =
1

2
(εµh)

2 +
1

2
h2(εµϑ)

2 → VEW(h) +
1

2
ω ϖ2(r)h2 cos (2ϱ + 2ϑ), (4.20)

where ϱ is the angle around the string on the z axis, r is the radial coordinate on the

orthogonal plane, and ϖ(r) is the un-perturbed string profile.

The equations of motion for the Higgs field are then

↭h = h(εµϑ)
2 → V →

EW(h) + ωh ϖ2(r) cos(2ϱ + 2ϑ), (4.21)

and

εµ(h
2εµϑ) = →ωh2 ϖ2(r) sin(2ϱ + 2ϑ). (4.22)

Let us now expand around the un-perturbed critical bubble for the Higgs,

h = h(R) + ω ςh, ϑ = c+ ω ςϑ, (4.23)

with c a constant. Then at the leading order in ω one has:

↭ςh+ V →→
EW(h(R))ςh = h(R)ϖ2(r) cos(2ϱ + 2c), (4.24)

and

εµ
[
h2(R)εµςϑ

]
= →h2(R)ϖ2(r) sin(2ϱ + 2c). (4.25)

Let us focus on the equations of motion for the Higgs. This can be solved by first

identifying the spectrum of the operator acting on ςh on the LHS. The best way to see this

is to write the perturbation in the eigenstate basis:

ςh =
∑

ω

cω
1

φ2
ϑω(x), (4.26)

and the search for the coe!cients (this is equivalent to the Green function method):

Oςh =
∑

ω

cωϑω(x) = S(x), (4.27)

where we have used that under the fluctuation operator Oϑω = φ2ϑω, so that

cω =

∫
dxϑ↑

ω
(x)S(x). (4.28)
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• Decoupled linear equations for the fluctuations with a source term:

(Higgs equation)

4.3 The PQ string as a source

Let us now consider the case of a PQ string which acts as a source, namely it is non–

dynamical both for what concerns the radial mode and the phase. Let us notice that from

our previous analysis we actually expect some back-reaction on the string itself at the same

order in the small portal ω expansion, so the result of the full dynamical model and the

background case considered here may not be equivalent.

However, we are motivated to consider this scenario first as we can make contact with

the explicit numerical solution of the equations of motion.

The Lagrangian for the background case is

L =
1

2
(εµh)

2 +
1

2
h2(εµϑ)

2 → VEW(h) +
1

2
ω ϖ2(r)h2 cos (2ϱ + 2ϑ), (4.20)

where ϱ is the angle around the string on the z axis, r is the radial coordinate on the

orthogonal plane, and ϖ(r) is the un-perturbed string profile.

The equations of motion for the Higgs field are then

↭h = h(εµϑ)
2 → V →

EW(h) + ωh ϖ2(r) cos(2ϱ + 2ϑ), (4.21)

and

εµ(h
2εµϑ) = →ωh2 ϖ2(r) sin(2ϱ + 2ϑ). (4.22)

Let us now expand around the un-perturbed critical bubble for the Higgs,

h = h(R) + ω ςh, ϑ = c+ ω ςϑ, (4.23)

with c a constant. Then at the leading order in ω one has:

↭ςh+ V →→
EW(h(R))ςh = h(R)ϖ2(r) cos(2ϱ + 2c), (4.24)

and

εµ
[
h2(R)εµςϑ

]
= →h2(R)ϖ2(r) sin(2ϱ + 2c). (4.25)

Let us focus on the equations of motion for the Higgs. This can be solved by first

identifying the spectrum of the operator acting on ςh on the LHS. The best way to see this

is to write the perturbation in the eigenstate basis:

ςh =
∑

ω

cω
1

φ2
ϑω(x), (4.26)

and the search for the coe!cients (this is equivalent to the Green function method):

Oςh =
∑

ω

cωϑω(x) = S(x), (4.27)

where we have used that under the fluctuation operator Oϑω = φ2ϑω, so that

cω =

∫
dxϑ↑

ω
(x)S(x). (4.28)
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(Goldstone equation)

4.3 The PQ string as a source

Let us now consider the case of a PQ string which acts as a source, namely it is non–

dynamical both for what concerns the radial mode and the phase. Let us notice that from

our previous analysis we actually expect some back-reaction on the string itself at the same

order in the small portal ω expansion, so the result of the full dynamical model and the

background case considered here may not be equivalent.

However, we are motivated to consider this scenario first as we can make contact with

the explicit numerical solution of the equations of motion.

The Lagrangian for the background case is

L =
1

2
(εµh)

2 +
1

2
h2(εµϑ)

2 → VEW(h) +
1

2
ω ϖ2(r)h2 cos (2ϱ + 2ϑ), (4.20)

where ϱ is the angle around the string on the z axis, r is the radial coordinate on the

orthogonal plane, and ϖ(r) is the un-perturbed string profile.

The equations of motion for the Higgs field are then
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EW(h) + ωh ϖ2(r) cos(2ϱ + 2ϑ), (4.21)

and

εµ(h
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with c a constant. Then at the leading order in ω one has:
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and
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Let us focus on the equations of motion for the Higgs. This can be solved by first

identifying the spectrum of the operator acting on ςh on the LHS. The best way to see this

is to write the perturbation in the eigenstate basis:

ςh =
∑

ω

cω
1

φ2
ϑω(x), (4.26)

and the search for the coe!cients (this is equivalent to the Green function method):

Oςh =
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cωϑω(x) = S(x), (4.27)

where we have used that under the fluctuation operator Oϑω = φ2ϑω, so that
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3 The PQ string as the source

Let us go back to our case of interest, and consider the source for the radial
mode perturbation (the phase may be done in a similar way). The main
complication is that the source is not spherically symmetric but it has a
dependence on the angle ω on the x→ y plane.

To be precise, the source term has the following dependence:

S(x) = ε2(R cos ϑ)h0(R) cos(2ω), (69)

where the PQ dependence may be neglected as a first approximation. This
is probably justified only where ϖf 2

a is electroweak scale, which is the case
we are considering for the moment. The case with large ϖf 2

a needs to be
considered carefully because it may require fine tuning to achieve a light
Higgs. Also then it looks like you may decouple the whole second doublet.
This is left for future work.

We anticipate that the main contribution will come from the lowest har-
monic with m = 2, namely l = 2.

Given the ansatz:

ϱh = c22N22Y22(ϑ,ω)R22(R) + ϖ
h0(R)

m2
h

cos(2ω), (70)

one obtains

c22 = N22 ε
2(↑)

∫
d3xY22(ϑ,ω)R22(R)h0(R) cos(2ω). (71)

in the end one has

ϱh ↓ Y22(ϑ,ω)R22(R) +
h(R)

m2
h

cos(2ω) (72)

3.1 For the phase

For the phase we have the following equation:

!ϱω+ ςµ logh0(R) ςµϱω = → sin 2ϑ, (73)

and assuming the usual spherical harmonic decomposition we have
[
→!+

l(l + 1)

r2
→ ςr logh0(r) ςr

]
Rω = φ2Rω. (74)

We have carried out the same analysis as for the radial mode, and we find
something that asymptotes to a constant beyond the wall an until there, with
qualitative agreement.
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In the case of interest one has

S(x) = ω2(R cos ε)h0(R) cos(2ϑ). (4.29)

We anticipate that the main contribution will come from the lowest harmonic with

m = 2, namely l = 2. Given the ansatz:

ϖh = c22N22Y22(ε,ϑ)R22(R) + ϱ
h0(R)

m2
h

cos(2ϑ), (4.30)

one obtains

c22 = N22 ω
2(→)

∫
d3xY22(ε,ϑ)R22(R)h0(R) cos(2ϑ), (4.31)

where the second term comes from neglecting the gradient terms in the operator O.

For the phase of the Higgs field we have the following equation:

↭ϖϑ+ ςµ logh0(R) ςµϖϑ = ↑ sin 2ε, (4.32)

and assuming the usual spherical harmonic decomposition we have

[
↑!+

l(l + 1)

r2
↑ ςr logh0(r) ςr

]
Rω = φ2Rω. (4.33)

We have carried out the same analysis as for the radial mode, and we find something that

asymptotes to a constant while approaching the wall of the critical bubble.

4.4 Expansion of the bubble at small ϱ

From the numerical results, we see that while the bubble expands the phase reaches an

asymptotic value for the amplitude, while keeping an angular dependence with l = 2 and

m = 2. It would be interesting to see if this bubble radiates GWs due to this quadrupole

even before expanding.

We then wonder if a static solution exists to the Higgs eoms representing a configuration

with a non–trivial profile for the phase and consequently the presence of domain walls for

the phase associated to its potential. A way to see this could be by solving the eoms with

Neumann boundary conditions on the (r, ε) plane.

5 Including KSVZ operators

Our study of bubble nucleation shows that the di”erence in the energy between the bubble

around the string, and the bubble where the portal coupling is set to zero is actually O(ϱ2):

Eε →=0
string, c = Eε=0

sph, c ↑ ϱ2|!E|. (5.1)

The fact that this sign is negative indicates that the energy shift cannot be written as

coming from the formation of a defect on top of the standard bubble, e.g. !E ↓ ↼R2 or

similar.
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When comparing the nucleation of a spherical bubble far from the string we may write

Eω →=0
string, c = Eω →=0

sph, c + |ωE|. (5.2)

One then has:

Eω →=0
string, c → Eω →=0

sph, c = |ωE| =
(
Eω=0

sph, c → Eω →=0
sph, c

)
→ ε2|!E| ↑ εf2

av
2R3 +O(ε2)→ ε2|!E|.

(5.3)

As we can see, the energy for nucleating on the string is parametrically larger, as the

contribution linear in ε is positive and counteracts nucleation, and we have stressed that

there could be additional ε2 corrections.

All in all, we see that we need to include a KSVZ like operator in order to make

nucleation on the string more likely and have some interesting dynamics during the phase

transition.

The KSVZ result in the small portal limit implies a di”erence in the action compared

to the spherical bubble far from the string given by

!EKSVZ ↑ ε1v
2R log (mεR). (5.4)

An order-of-magnitude estimate for this contribution to be more important than the DFSZ

one gives

ε1 log (mεR) > (mAR)2 (5.5)

where mA ↑ εf2
a . This condition is derived by combining naively the two contributions.

6 Numerical computation for bounce

In order to get numerical solution of the bounce in the presence of the axion string, we

introduce the modified gradient flow method, which was originally introduced in Ref. [8].

Here we use ϑ symbolically to denote all dof in the theory, i.e., ϑ = {H1,2, S, Zi, · · · }.
One simple way to obtain solutions of equations of motion is a gradient flow (a.k.a the

steepest descent flow), which is an iterative procedure starting with an initial configuration

for a field ϑ0 to be updated by the following algorithm:

ϑn+1(x) = ϑn(x)→ ϖ
ωST [ϑn]

ωϑn(x)
, (6.1)

where ST is the action at finite temperature T , ϑn(x) is the n-th step configuration, and ϖ

is a small parameter to control the updating speed. If this iteration converges, the obtained

configuration is a solution of EOM since it is a stationary point of the action satisfying

ωST /ωϑn(x) = 0.

However, this method is not straightforwardly applicable to bounce solutions. Accord-

ing to Derrick’s theorem and Coleman’s theorem [9], a bounce solution in a pure scalar

theory must be a saddle point of the Euclidean action instead of a local minimum and have
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• Seeded nucleation actually disfavored for all κ ≠ 0

• However we still need to account for KSVZ-type interactions

2 Setup

The EFT for KSVZ and DFSZ axion models have been derived [3].

The Lagragian of our model is

L = |ωµS|2 + |DµH1|2 + |DµH2|2 → VS(|S|)→ VEW(H1, H2)→
(
εS2H†

1H2 + h.c.
)
. (2.1)

The potential for H1 and H2 is invariant for arbitrary global rephasings of both Higgses.

The full potential is given by

VEW = m2
11H

†
1H1 +m2

22H
†
2H2 +

ϑ1

2

(
H†

1H1

)2
+

ϑ2

2

(
H†

2H2

)2
(2.2)

+ ϑ3

(
H†

1H1

)(
H†

2H2

)
+ ϑ4

(
H†

1H2

)(
H†

2H1

)
, (2.3)

VS = →m2
S |S|2 + ϑS |S|4, (2.4)

Vmix =
(
εS2H†

1H2 + h.c.
)
+ ε1S |S|2|H1|2 + ε2S |S|2|H2|2, (2.5)

The rotation that removes the axion from the portal coupling can be rewritten as [4]

H ↑ e→iωHeiωc2ωε3 , (2.6)

where the bi–doublet is defined as:

H = (iϖ2H
↑
1 , H2). (2.7)

This will change the kinetic term of the Higgses as

Tr |DµH|2 ↑ Tr |Dµe
→iωHeiωc2ωε3 |2. (2.8)

It is a non–trivial exercise to show how the axion couples to the gauge bosons and/or the

Higgses from the covariant derivative. We expect that the axion does not mix with the

gauge bosons, but only to some |H|2 combination.

The observation we want to make is the following: from the kinetic term it seems that

the Higgs will couple to the axion with a strength that is independent of ε. In other words,

it is not clear how the decoupling between the higgs and the axion takes place when ε ↑ 0.

What we notice however, is that in this limit the A0 boson of the 2HDM becomes massless

(as in the original visible axion model). In this case we presume that the Higgs bi-doublet

can be rewritten in a way that makes the Goldstone nature of A0 apparent:

H = e→iA
0
/vH↓eiA

0
/vc2ωε3 (2.9)

where H↓ does not contain the A0 degree of freedom. Then, one can see that if this is

the case the A0 only enters the Lagrangian in the combination A0 + ϱ, such that a field

redefinition will make the Higgs doublets couple only to A0 (which is now a visible axion),

and not to the invisible axion, as expected in the decoupling limit.

This exercise was intended to show that there could be possible cancellations between

the axion and A0 also at finite values of ε. It is still unclear how these cancellations take
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Summary and outlook
• The presence of impurities in the early Universe can strongly affect the way a phase 

transition proceeds


• The xSM with  symmetry is arguably the simplest (and complete) example for an 
EWPT seeded by domain walls


• Other defects can exist at the time of the EWPT: dedicated study of QCD axion strings 
in KSVZ model with Higgs portal, and extension to DFSZ


• Pheno aspects of seeded phase transitions: percolation, slow transitions, expansion 
of non—spherical bubbles, features in the GW signal?


• New opportunities to study tunneling in quantum/thermal field theory 
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