Cosmological phase transitions, nonperturbatively

Oliver Gould University of Nottingham

Gravitational Wave Probes of Physics Beyond Standard Model 4 25 June 2025

Gravitational waves from phase transitions

Confinement transitions in dark SU(6) Yang-Mills.

Huang et al. '21

Understanding phase transitions

Why nonperturbative?

Even if g^2 is small, but the temperature is high

 \approx

$$g^{24}\int_{p_1\dots p_{12}}\frac{1}{p_i^{46}}n_B(p_i)^{12}$$

$$\approx g^{24} \frac{(g^2 T)^{48}}{(g^2 T)^{46}} \left(\frac{1}{g^2}\right)^{12} \approx g^4 T^2$$

Linde '80

Lattice QFT

Review of lattice QFT: discretisation

• Scalars, fermions live on sites: $\phi(x)$, $\psi(x)$.

• Gauge fields parallel transport along links.

$$\underbrace{U_{\mu}(x)}_{\in \text{group}} = \exp\left[-i \int_{x}^{x+a\hat{\mu}} \underbrace{\mathcal{A}_{\nu}(x')}_{\in \text{algebra}} dx'_{\nu}\right]$$

• Field strengths circle around plaquettes.

$$egin{aligned} U_{\mu
u}(x) &= U_{\mu}(x)U_{
u}(x+a\hat{\mu})U_{\mu}^{\dagger}(x+a\hat{
u})U_{
u}^{\dagger}(x)\ &\sum_{\mu
u}\mathrm{Tr}(1-U_{\mu
u}(x))
ightarrowrac{a^4}{4}\mathrm{Tr}F_{\mu
u}F_{\mu
u}+O(a^2) \end{aligned}$$

Review of lattice QFT: sampling probabilities

• Wick rotate $t \rightarrow it_{\mathsf{E}}$ the whole path integral

$$\int \mathcal{D}\phi \mathcal{D}\psi \mathcal{D}A \underbrace{e^{iS[\phi,\psi,A]}}_{\text{phase}} \rightarrow \int \mathcal{D}\phi \mathcal{D}\psi \mathcal{D}A \underbrace{e^{-S_{\mathsf{E}}[\phi,\psi,A]}}_{\text{probability}}$$

Now tackle with Monte-Carlo importance sampling

$$\langle \phi(x) \rangle = rac{1}{N_{\text{samples}}} \sum_{i=1}^{N_{\text{samples}}} \phi_i(x)$$

with $\phi_i(x)$ a random variable drawn from $P(\phi) \propto e^{-S_{\mathsf{E}}[\phi,\psi,A]}$.

• Errors decrease as $\propto 1/\sqrt{N_{\text{samples}}}$, independent of dimensionality.

Review of lattice QFT: fluctuating fields

In classical field theory problems, fields are smooth on short scales.

$$\Rightarrow \left|\frac{\phi_{i+1} - \phi_i}{a}\right| = O(1)$$

But quantum fields are noisy!

$$\exp\left[-a^{4}\left(\frac{\phi_{i+1}-\phi_{i}}{a}\right)^{2}\right] = O(1)$$
$$\Rightarrow \left|\frac{\phi_{i+1}-\phi_{i}}{a}\right| = O(a^{-2})$$

Review of lattice QFT: continuum limit

• Input lattice parameters are bare parameters, e.g.

$$\mathscr{L}_{\mathsf{lat}} \supset rac{1}{2} m_{\mathsf{lat}}^2 \phi(x)^2 + rac{1}{4!} \lambda_{\mathsf{lat}} \phi(x)^4$$

where e.g. $m_{\rm lat}^2 \propto a^{-2}$ and $\lambda_{\rm lat} \propto \log a$ in the continuum limit.

• So must measure the physical mass, e.g. by fitting

$$\langle \phi(0)\phi(x)
angle \propto rac{e^{-m_{\mathsf{phys}}|x|}}{|x|^2}$$

 Change bare input parameters to follow lines of constant physics as a → 0₊.

Review of lattice QFT: continuum limit

• Input lattice parameters are bare parameters, e.g.

$$\mathscr{L}_{\mathsf{lat}} \supset rac{1}{2} m_{\mathsf{lat}}^2 \phi(x)^2 + rac{1}{4!} \lambda_{\mathsf{lat}} \phi(x)^4$$

where e.g. $m_{\rm lat}^2 \propto a^{-2}$ and $\lambda_{\rm lat} \propto \log a$ in the continuum limit.

• So must measure the physical mass, e.g. by fitting

$$\langle \phi(0)\phi(x)
angle \propto rac{e^{-m_{
m phys}|x|}}{|x|^2}$$

 Change bare input parameters to follow lines of constant physics as a → 0₊.

Review of lattice QFT complete!

Recent lattice results

- First-order confinement transitions in SU(N), Sp(N)
- Large N behaviour, e.g. $L/T_c^4 = 0.360(6)N^2 1.88(17)$

SU(8) confinement interface Rindlisbacher et al. '25 Sp(4) plaquette distribution

Bennett et al. '24

see also Springer et al. '23

Lattice Monte-Carlo strengths

- Strong couplings are easy
- Computable errors
 - Statistical errors often $\sim 1\%$
 - Systematic errors from continuum limit also often $\sim 1\%$

Continuum limit of latent heat

Rindlisbacher et al. '25

Lattice Monte-Carlo weaknesses

• Time dependent quantities are not computable, as the real-time sign problem prevents importance sampling,

$$\langle \mathcal{O}(t)\mathcal{O}(0)
angle = rac{1}{Z}\int \mathcal{D}\phi \;\mathcal{O}(t)\mathcal{O}(0)e^{iS[\phi]}$$

and analytic continuation of noisy data is generally ill posed.

• Some models don't exist on the lattice, notably chiral non-Abelian gauge couplings, so the $SU(2)_w$ interactions of the SM can't be put on the lattice. Nielsen & Ninomiya '81

Lattice Monte-Carlo weaknesses

• Time dependent quantities are not computable, as the real-time sign problem prevents importance sampling,

$$\langle \mathcal{O}(t)\mathcal{O}(0)
angle = rac{1}{Z}\int \mathcal{D}\phi \;\mathcal{O}(t)\mathcal{O}(0)e^{iS[\phi]}$$

and analytic continuation of noisy data is generally ill posed.

• Some models don't exist on the lattice, notably chiral non-Abelian gauge couplings, so the $SU(2)_w$ interactions of the SM can't be put on the lattice. Nielsen & Ninomiya '81

We will see ways around these below!

Extending lattice methods with EFT

High temperature QFT

• Thermodynamics $Z = \text{Tr}e^{-\hat{H}/T}$ formulated in $\mathbb{R}^3 \times S^1$

$$\Rightarrow \Psi(\tau, \mathbf{x}) = \sum_{n} \psi_n(\mathbf{x}) e^{i(n\pi T)\tau}$$

• These modes have masses $m_n^2 = m^2 + (n\pi T)^2$, so on energy scales $\ll \pi T$, the nonzero modes can be integrated out

Kajantie et al. '95, Braaten & Nieto '95

3d effective theories

• In a 3d EFT, canonical mass dimensions are different

$$\int_{\mathbb{R}^3} \mathscr{L}_{eff} \supset \int_{\mathbb{R}^3} \left[\underbrace{\frac{1}{2} \partial_i A_0^a \partial_i A_0^b}_{[A_0^a]=1/2} - \underbrace{\overline{g}_{abc} A_i^a A_0^b \partial^i A_0^c}_{[\overline{g}_{abc}^2]=1} + \frac{\overline{m}_{ab}^2}{2} A_0^a A_0^b \right].$$

Marginal interactions become relevant \rightarrow superrenormalisable.

- Superrenormalisability \Rightarrow continuum limit simple. Laine '95
- The loop expansion parameter changes

$$\alpha \equiv \frac{g^2}{(4\pi)^2} \rightarrow \alpha_3 \equiv \frac{g_3^2}{(4\pi)m_3},$$

and diverges for massless interacting fields. Linde '80

Electroweak phase diagram

Electroweak phase diagram

Resummations

Electroweak phase diagram

Infrared breakdown

 $V_{\rm eff} = ?$

All higher loops $\subset N^5LO$. Linde '80

Resolve by 3d lattice simulations.

Farakos et al. '94, Kajantie et al. '96

Csikor, Fodor & Heitger '98

OG, Güyer & Rummukainen '22

Order of the EW phase transition? A potted history

- Leading order (LO): $V_T = V_0 + \bigcirc$
 - $\Rightarrow 2^{nd} \text{ order}$

• NLO: $V_T = V_0 + \bigcirc + \bigcirc$ $\Rightarrow 1^{\text{st}} \text{ order}$ Arnold

- Infrared problems at higher orders \Rightarrow ? order Linde '80
- EFT + lattice approach resolves all issues ⇒ crossover Kajantie et al '96
- Accurate thermodynamics for SM

D'Onofrio & Rummukainen '15, Laine & Meyer '15

Lattice simulations of the xSM

$$\mathscr{L} = \mathscr{L}_{SM} - \frac{a_1}{2} (\Phi^{\dagger} \Phi) S - \frac{a_2}{2} (\Phi^{\dagger} \Phi) S^2 - \frac{1}{2} (\partial S)^2 - \frac{m_S^2}{2} S^2 - \frac{b_3}{3} S^3 - \frac{b_4}{4} S^4$$

Niemi et al. '24

Testing perturbative approaches with the lattice

$$\mathscr{L} = \mathscr{L}_{\mathsf{SM}} - \frac{a_2}{2} \Phi^{\dagger} \Phi \Sigma^a \Sigma^a - \frac{1}{2} D_{\mu} \Sigma^a D^{\mu} \Sigma^a - \frac{m_{\Sigma}^2}{2} \Sigma^a \Sigma^a - \frac{b_4}{4} (\Sigma^a \Sigma^a)^2$$

Niemi et al. '20', OG & Tenkanen '23'

Lattice for real-time physics

Hard thermal loops

- Generalises dimensional reduction for time-dependent quantities. Braaten, Pisarski, Frenkel, Taylor, Wong '90; Blaizot & lancu '94
- Equivalent to fluctuating classical fields, coupled to fluctuating Boltzmann particles

 \rightarrow possible (but tricky) to put on the lattice.

e.g. Bödeker, Moore, Rummukainen '00

 For scalars, or gauge fields further in the IR, this becomes Langevin evolution Aarts & Smit '97; Bödeker '98; Greiner & Müller '00 → easy to put on the lattice.

Lattice simulations of bubble nucleation — a history

• Stochasic lattice simulations proposed for studying nucleation

Grigoriev & Rubakov; Bochkarev & de Forcrand '88

- Lattice and semiclassical predictions strongly disagree on nucleation rate
 Valls & Mazenko '90; Alford et al. '91
- Lattice counterterms and fitting improves qualitative agreement

Alford et al. '93; Borsanyi et al. '00

• New method for suppressed transitions, but still $e^{O(10)}$ to $e^{O(100)}$ disagreement

Moore, Rummukainen, Tranberg '00, '01

A super perturbative benchmark point

Perturbation theory converging very quickly for latent heat,

$$\underbrace{\frac{1.341(2)}{_{\text{lattice}}}}_{\text{lattice}} \stackrel{?}{=} \underbrace{\underbrace{1.2}_{\text{tree}}}_{\text{tree}} + \underbrace{\underbrace{0.1378}_{1\text{-loop}}}_{2\text{-loop}} + \underbrace{\underbrace{0.0054}_{3\text{-loop}}}_{3\text{-loop}} + \ldots$$
$$\stackrel{\checkmark}{=} 1.34170(4)$$

OG '21

Benchmarking against the lattice

Qualitative agreement for log rate, but way worse than latent heat,

$$\underbrace{-74.09(5)}_{\text{lattice}} \stackrel{?}{=} \underbrace{-38.02}_{\text{tree}} - \underbrace{25.32}_{1\text{-loop}} + \dots$$
$$\stackrel{\times}{=} -63(3)$$

OG, Kormu & Weir '24; see also Seppä et al. '25; Hällfors & Rummukainen '25

Nucleation in d = 1 + 1

Wait-and-see simulations:

- $\rightarrow\,$ rate is lower than predicted
- $\rightarrow \mbox{ IR modes fail to} \\ \mbox{ thermalise }$

Pîrvu, Shkerin & Sibiryakov '24 see also Batini et al. '23

What about a fully thermalised metastable phase?

Define the nucleation rate as the initial escape rate,

$$\Gamma \equiv -\int_{\text{meta}} \mathcal{D}\phi \mathcal{D}\pi \left. \delta_{\text{NR}}(\mathcal{T}) \frac{\partial \rho}{\partial t} \right|_{t=0},$$

excluding trajectories that return in a microscopic timescale.

Hirvonen & OG '25

Langer's nucleation rate reproduced on the lattice

$$\Gamma_{Langer} = 2.25(23) imes 10^{-4} \,, \qquad \Gamma_{lattice}^{thermal} = 2.09(4) imes 10^{-4} \,.$$

A fully thermalised metastable phase nucleates with Langer's rate (at least in 1+1d). Hirvonen & OG '25

Summing up

Lattice simulations are important for:

- resolving phase diagrams (e.g. electroweak)
- studying confinement transitions
- testing perturbative approaches

What we don't yet know:

- Is nucleation fully thermal in cosmology?
- Why is nucleation harder in 3+1d than 1+1d?

Some things we didn't cover:

- v_w on the lattice
- other nonperturbative methods

Mou et al. '20

Summing up

Lattice simulations are important for:

- resolving phase diagrams (e.g. electroweak)
- studying confinement transitions
- testing perturbative approaches

What we don't yet know:

- Is nucleation fully thermal in cosmology?
- Why is nucleation harder in 3+1d than 1+1d?

Some things we didn't cover:

- v_w on the lattice
- other nonperturbative methods

Thanks for listening!

Mou et al. '20

Backup slides

Mapping BSM models to the electroweak high-T EFT

- EFT characterised by $x \equiv \lambda_3/g_3^2$, with $x_{\rm SM} \approx \frac{m_H^2}{8m_W^2}$.
- New scalar σ with Higgs-mixing angle θ modifies x as

$$x pprox x_{
m SM} + rac{m_\sigma^2 - m_H^2}{8m_W^2} \sin^2 heta$$

OG et al. '19

Simulations beyond the SM

• Minimally supersymmetric SM

Laine & Rummukainen '99, '00; Laine, Nardini & Rummukainen '12

- SM plus a new scalar singlet (xSM), doublet (2HDM) or triplet (Σ SM) Niemi et al. '19, '20, '24
- Simpler models without electroweak sector Karjalainen et al. '96; Arnold & Moore '01; Sun '02; Jüttner et al. 20; OG '21

Distribution shifts

$$\begin{aligned} \mathscr{L} &= \mathscr{L}_{\mathsf{SM}} - \frac{a_1}{2} (\Phi^{\dagger} \Phi) S - \frac{a_2}{2} (\Phi^{\dagger} \Phi) S^2 \\ &- \frac{1}{2} (\partial S)^2 - \frac{m_5^2}{2} S^2 - \frac{b_3}{3} S^3 - \frac{b_4}{4} S^4 \end{aligned}$$

OG & Saffin '24