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Big Bang today



Gravitational waves from phase transitions
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Confinement transitions in dark SU(6) Yang-Mills.

Huang et al. '21
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Understanding phase transitions
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Why nonperturbative?

Even if g2 is small, but the temperature is high
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Lattice QFT



Review of lattice QFT: discretisation

® Scalars, fermions live on sites: ¢(x), 1(x).
® Gauge fields parallel transport along links. :
x+afl \ 4
Uu(x) = exp [— i/ Ay (x) de]
~—— X ~—— ——
€group €algebra

® Field strengths circle around plaquettes.
U (x) = Uu(x) Uy (x + aﬂ) Uf(x + ab) Uj(x)

ZTr(1— (X)) — TrFl,FW—i—O(az)
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Review of lattice QFT: sampling probabilities

® Wick rotate t — itg the whole path integral

/D¢D¢DA eSlebAl /D(bD@DDA o~ Seld,1,A]
N—— N—
phase probability

® Now tackle with Monte-Carlo importance sampling
1 Nsamples

> 6ilx)

N,
samples i—1

(p(x)) =

with ¢;(x) a random variable drawn from P(¢) ox e~ Sel®¥:Al

® Errors decrease as o< 1/4/Nsamples, independent of
dimensionality.
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Review of lattice QFT: fluctuating fields

In classical field theory problems,
fields are smooth on short scales.

P

| i1 = ¢/' —o(1)

But quantum fields are noisy!

exp[ <¢'+l (’5') ] —o(1)

N ‘¢i+1a— % _ o (a2)

7/21



Review of lattice QFT: continuum limit

® |nput lattice parameters are bare parameters, e.g.

1 1
Lat D §m|zat¢(x)2 + E)\Iat(b(x)‘l

where e.g. mét o a2 and Ajat  log a in the continuum limit.

® So must measure the physical mass, e.g. by fitting
e_mphys‘x‘

(6(0)9(x)) ox W

® Change bare input parameters to follow lines of constant
physics as a — 0.
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Review of lattice QFT: continuum limit

® |nput lattice parameters are bare parameters, e.g.

1 1
Lat D §m|zat¢(x)2 + E)\Iat(p(x)‘l

where e.g. mét o a2 and Ajat  log a in the continuum limit.

® So must measure the physical mass, e.g. by fitting

e_mphys‘x‘

(6(0)9(x)) ox W

® Change bare input parameters to follow lines of constant
physics as a — 0.

Review of lattice QFT complete!
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Recent lattice results

® First-order confinement transitions in SU(N), Sp(N)

® Large N behaviour, e.g. L/ T# = 0.360(6)N? — 1.88(17)

® Density of states method
for strong transitions

0.6;
Re(P.) 0A4‘\
0.

SU(8) confinement interface
Rindlisbacher et al. '25

Py (up)

Sp(4) plaquette distribution

Bennett et al. '24
see also Springer et al. '23
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Lattice Monte-Carlo strengths

® Strong couplings are easy
e Computable errors

® Statistical errors often
~ 1%
® Systematic errors from

continuum limit also often
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Continuum limit of latent heat

Rindlisbacher et al. '25
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Lattice Monte-Carlo weaknesses

® Time dependent quantities are not computable, as the
real-time sign problem prevents importance sampling,

1 .
©(00) = 5 [ Do 001
and analytic continuation of noisy data is generally ill posed.
® Some models don't exist on the lattice, notably chiral

non-Abelian gauge couplings, so the SU(2),, interactions of
the SM can’t be put on the lattice.
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Lattice Monte-Carlo weaknesses

Time dependent quantities are not computable, as the
real-time sign problem prevents importance sampling,

(O(t)0(0)) = ;/ng O(t)0(0)e!

and analytic continuation of noisy data is generally ill posed.

Some models don't exist on the lattice, notably chiral
non-Abelian gauge couplings, so the SU(2),, interactions of
the SM can’t be put on the lattice.

We will see ways around these below!
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Extending lattice methods with EFT



High temperature QFT

® Thermodynamics Z = Tre A/ formulated in R3 x St

:>\U7'X ZT/] InTI'T)T

® These modes have masses m? = m? + (n7 T)

, SO On energy
scales < 7T, the nonzero modes can be integrated out

4 — .,E/ﬂeff
R3x St R3
" .
bosons and fermions just bosons
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3d effective theories

® |n a 3d EFT, canonical mass dimensions are different

1 U

/ Lefr D/ Z0; A0 A8 — Babc ATAGD AS +—22

R3 R3 2 —_—— 2
[

AZALL.

Ag=1/2 (Eohcl=1

Marginal interactions become relevant — superrenormalisable.

® Superrenormalisability = continuum limit simple.

® The loop expansion parameter changes

g2 g

(@r2 T (@mms’

(0}

and diverges for massless interacting fields.
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Electroweak phase diagram

One-loop
One loop
5
Vett = Vo + () F
1

2nd order line

1
= Sma(T)e” + 7 2s(T)e"

Y

T = Xs/g3
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Electroweak phase diagram

Resummations
Resummed one loop
Verr = Vo+ (O + ()
3 Il \
2\3/2 =3
7m3¢ + /\ ¢ 16 (¢ ) / " 1st order line
Vet (6,7) . o
0 T =XN3/93

An EFT expansion in \/A3/gs:

NLO Arnold & Espinosa '92
N2LO Ekstedt, OG & Léfgren '22
N4LO Ekstedt, Schicho & Tenkanen '24

15/27



Electroweak phase diagram

Infrared breakdown

Lattice
Ve =7 ¥
. 5 Il 1st order line
All higher loops C N°LO. Linde 80 =
Verr(¢, 1) 2nd order endpoint
7\ (
// | o ;E:i
) ° T = Xa/g3

Resolve by 3d lattice simulations.
Farakos et al. '94, Kajantie et al. '96

Csikor, Fodor & Heitger '98
OG, Giiyer & Rummukainen '22
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Order of the EW phase transition? A potted history

Leading order (LO): V7 = Vo + ()

= 2" order

NLO: Vr=Vo+ () +{ ¢

= 1%t order

Infrared problems at higher orders
= 7 order

EFT + lattice approach resolves all issues
= crossover

Accurate thermodynamics for SM
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Lattice simulations of the xSM

My =600 GeV, ay = 4.0,b3 = =75 GeV, by = 0.5, 5 = 40, N, = 80

4.0 —-=- 1-loop
—— 2loop
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Testing perturbative approaches with the lattice

lattice vs loop expansion

lattice vs EFT expansion
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Niemi et al. '20’, OG & Tenkanen '23’
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Lattice for real-time physics



Hard thermal loops

® Generalises dimensional reduction for time-dependent
quantities. Braaten, Pisarski, Frenkel, Taylor, Wong '90; Blaizot & lancu '94

® Equivalent to fluctuating classical fields, coupled to
fluctuating Boltzmann particles

— possible (but tricky) to put on the lattice.

e.g. Bodeker, Moore, Rummukainen '00

® For scalars, or gauge fields further in the IR, this becomes
Langevin evolution  Aarts & Smit '97; Bédeker '98; Greiner & Miiller '00
— easy to put on the lattice.
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Lattice simulations of bubble nucleation — a history

® Stochasic lattice simulations proposed for
studying nucleation

® | attice and semiclassical predictions
strongly disagree on nucleation rate

® |attice counterterms and fitting improves
qualitative agreement

® New method for suppressed transitions,
but still e9(19) to ¢9(100) disagreement
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A super perturbative benchmark point

/?}E point

10°

5)/V s

= -===1-loop
< —— 2-loop
—— 3-loop

$  lattice

10! 10°

as(jasn) = By (4gs))
Perturbation theory converging very quickly for latent heat,

1.341(2) = 1.2 +0.1378+0.0054 — 0.0016 + . . .
N o e

lattice tree 1-loop 2-loop 3-loop

£ 1.34170(4)
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Benchmarking against the lattice

—20

—404

—604

log(I'/A)

780 -
tree-level
LPA
one-loop
lattice

—100

—120 T T T T T
92.0 92.5 93.0 93.5 94.0 94.5 95.0

Qualitative agreement for log rate, but way worse than latent heat,

—74.09(5) = —38.02—25.32 +. ..
N — —— =
lattice tree 1-loop
= —63(3)
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Nucleation ind =1-+1

N CR ) v [\W\

InP. . . .
OOS:N . . . i Wait-and-see simulations:
-0 OSN — rate is time
0.10 TN T~ T dependent
™~ i — rate is lower than
-0.15 - _
TN predicted
—0-200 "+ 509
| \ — IR modes fail to
—0.25 =——=-T=0.095 S )
—030f — T=01 N thermalise
2-10°  4-10°  6-10°
t
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What about a fully thermalised metastable phase?

~..--"
Define the nucleation rate as the initial escape rate,

= — D¢Dr 5NR(T)@ ,

meta ot t=0

excluding trajectories that return in a microscopic timescale.

Hirvonen & OG '25
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Langer’'s nucleation rate reproduced on the lattice

Nucleation rate

-~ Langer’s rate, [iager
B Rate in At bin
Linear fit
Initial rate, Tiastice

Time, t

lattice

Manger = 2.25(23) x 1074, Tthermal — 2 09(4) x 107*.

A fully thermalised metastable phase nucleates with Langer's rate
(at least in 1+41d).
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Summing up

Lattice simulations are important for:
e resolving phase diagrams (e.g. electroweak)
® studying confinement transitions

® testing perturbative approaches

What we don't yet know:
® |s nucleation fully thermal in cosmology?
® Why is nucleation harder in 3+1d than 1+1d?

Some things we didn't cover:
® v, on the lattice

® other nonperturbative methods
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Summing up

Lattice simulations are important for:
e resolving phase diagrams (e.g. electroweak) &
® studying confinement transitions b

® testing perturbative approaches

What we don’t yet know: /\@/\
® |s nucleation fully thermal in cosmology?

® Why is nucleation harder in 3+1d than 1+1d?

Some things we didn't cover:

® v, on the lattice

® other nonperturbative methods

Thanks for listening!
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Backup slides



Mapping BSM models to

x>0.11: crossover

<

duration—!

<

BIH.

1- and 2-loop
cancellations

® EFT characterised by x = \3/g3, with xsm ~

the electroweak high-T EFT

Large couplings
or many BSM fields

/’
\

Xx—0: BSM degrees of tona

freedom become dynamical
or dim-6 operators important

LISA SNR=10
107!

«= strength

7y
8myy,

® New scalar ¢ with Higgs-mixing angle 6 modifies x as

m

2 2
ms — ms, .
H sin2 g
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Simulations beyond the SM

0.50
broken U

0.40

® Minimally supersymmetric SM
® SM plus a new scalar singlet (xSM), doublet (2HDM) or
triplet (XSM)

® Simpler models without electroweak sector
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counts

Distribution shifts

Te(GeV)

0 50 100 150 200

AT/T.

£ = Lom - %(qmb)s - 2 (ol0)s?

1
- 5(09)* -

mS 52 b35 bs 54
3
OG & Saffin '24
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